

Background on Heater-Coolers

- Hospital, operating room instruments
- Heat blood and cool patients
- Using during heart surgery
- Linked to O₂ CO₂ exchange
- October 2015: Post-operative *Mycobacterium chimaera* infections

WirginiaTech

Mycobacterium chimaera

- Member of the M. avium complex (MAC)
- Natural inhabitant of natural and engineered water systems
- · Human opportunistic pathogen
- Disinfectant-, temperature-, and desiccationresistant
- Grows in water in biofilms
- Readily aerosolized from water

3

The Sorin 3T Heater-Cooler

- · Major manufacturer of heater-coolers
- Manufactured in Munich, Germany
- Cardiac surgery infections all linked to Sorin 3T and M. chimaera
- Infections rare, but mortality 50 %
- M. chimaera isolated from Sorin 3T and from settle (aerosol) plates in OR

WirginiaTech

Challenges

- *M. chimaera*, like other MAC, highly disinfectant- (e.g., chlorine) resistant
- Disinfectant-resistance increased by biofilm-formation
- Heater-cooler offers high surface to volume ratio = Biofilm-formation
- Recirculation of 37°C water = Growth

WirginiaTech

Biofilm Formation

- Hydrophobic M. chimaera cells adhere to surfaces
- Growth on surfaces
- Production of extracellular matrix consisting of lipid, protein, and DNA
- Shields cells from disinfectant
- Adherence and biofilm-formation allows persistence in flowing systems

7

M. chimaera in Heater-Cooler

- · Heater-cooler is an ideal habitat
- · High surface to volume ratio
- · Water warmed and circulated
- Adherence and biofilm formation
- Grows at low carbon (AOC) levels
- Grows at low oxygen levels (6 % O₂)
- Disinfectant-resistance

₩ VirginiaTech

Questions

- How to kill M. chimaera in biofilms?
- Why were Sorin 3T-linked infections all due to M. chimaera?
- Were the *M. chimaera* isolates from Sorin 3T heater-coolers identical?
- What was the source of *M. chimaera* in Sorin 3T heater-coolers?

WirginiaTech

9

Disinfection

- Growth conditions for *M. chimaera*?
- Lab media versus water?
- · Cells in heater-coolers from water
- Water-acclimation after growth in media
- What disinfectant? Chlorine
- Water-acclimated cells significantly more chlorine-resistant

10

₩VirginiaTech

Developing an *M. chimaera*Disinfection Protocol - 1

- Dosage = Concentration x Duration
- · Higher dosage to kill cells in biofilms
- Surviving cells in biofilms = reappearance of M. chimaera
- Disinfectant choice and dosage limited by machine susceptibility
- · Disinfectants (e.g., chlorine) corrosive

WirginiaTech

11

Developing an *M. chimaera*Disinfection Protocol - 2

- Release M. chimaera cells from biofilm
- Detergent-exposure prior to chlorine exposure
- Prolystica® chosen
- 5 min Prolystica® followed by 5 min Chlorine = 3 logs killing

12

₩VirginiaTech

Validation of *M. chimaera*Disinfection Protocol

- Challenge: 100 million M. chimaera/mL
- Sample: (1) pre-inoculation, (2) inoculum number, (3) post-inoculum number, (4) post-Prolystica® number, (5) post-chlorine number, (6) post-disinfection protocol numbers weekly to 12 weeks

13

Lessons Learned - 1

- Disappearance of inoculum in 5 min
- Post-inoculum density only 0.1 % of expected, based on dilution of inoculum
- 99.9 % of *M. chimaera* inoculum lost due to surface adherence
- To attain 3-logs of killing, needed to inoculate with 10-billion cells

Lessons Learned - 2

- Prolystica® + Chlorine = > 3-log killing
- Met FDA requirement of > 3-log killing
- No absolute eradication of M. chimaera
- Reappearance of *M. chimaera* by 8-12 weeks
- Reappearance due to survival of biofilm-adherent *M. chimaera* cells

15

Where Did *M. chimaera* Originate?

- Sorin 3Ts tested at factory before shipping
- Munich water carried M. chimaera
- M. chimaera "inoculated" at factory
- M. chimaera in biofilms before shipping

16

Clonal *M. chimaera* in Sorin 3Ts

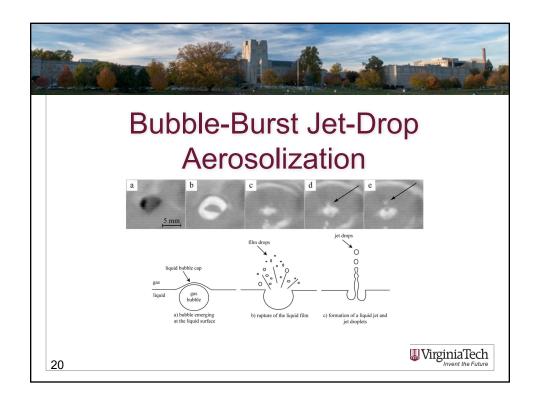
- Only M. chimaera isolated from Sorin 3T heater-coolers implicated infections
- Whole genome sequencing showed all M. chimaera from same clone.
- M. chimaera from Munich factory water identical to patient isolates

17

M. chimaera Survival After Draining and Shipping?

- Rapid adherence and biofilm-formation after filling for testing
- Survival after draining due to high moisture content of biofilm (80 %)
- M. chimaera desiccation-tolerant:
- 50 % survival after 6 weeks

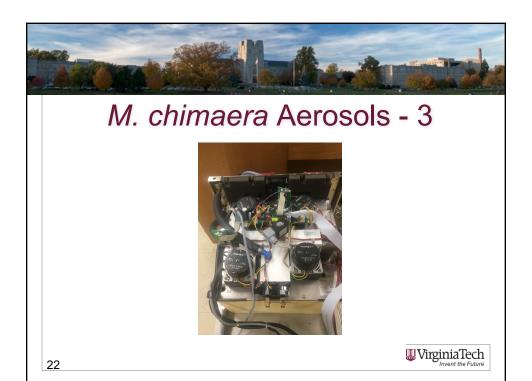
18



M. chimaera Aerosols - 1

- M. chimaera, MAC, and other Mycobacterium spp. hydrophobic cell surface
- MAC readily aerosolized from water
- Bubble burst jet drop mechanism
- Biofilm formation on underside of reservoir lid

19



M. chimaera Aerosols - 2

- Moisture drawn to outside surface through screw holes
- Small fan above reservoir drew *M.* chimaera droplets to outside cabinet
- M. chimaera-laden aerosols circulate in operating room infecting patient

21

Summary

- · Acclimate cells to water
- Release cells from biofilms with detergent
- · Chlorine effective disinfectant
- Mycobacteria will always return
- Regular detergent-chlorine disinfection

24

www.webbertraining.com/schedulep1.php	
March 25, 2021	SAFETY IN THE MEDICAL DEVICE REPROCESSING DEPARTMENT Speaker: Merlee Steele-Rodway, Reg. Nurse Educator/Consultant, Canada
April 8, 2021	HEALTHCARE WATER & SANITARY SERVICES - THE PRICE OF POOR DESIGN, CONSTRUCTION, USAGE AND MAINTENANCE Speaker: Dr. Michael Weinbren, Sherwood Forest Hospitals NHS Foundation Trust, UK
April 15, 2021	(<u>FREE Teleclass</u>) THE GLOBAL VIRUS NETWORK IN THE COVID-19 ERA Speaker: Prof. Christian Bréchot, Initiative on Microbiomes, University of South Florida
April 21, 2021	(South Pacific Teleclass) PREVENTING INFECTION TRANSMISSION IN THE WORKPLACE Speaker: Crystal Polson, University of Melbourne, Australia
April 27, 2021	(FREE European Teleclass Denver Russell Memorial Teleclass Lecture) HYGIENE BEHAVIOUR IN OUR HOMES AND EVERYDAY LIVES TO MEET 21ST CENTURY NEEDS Speaker: Prof. Sally Bloomfield, International Scientific Forum on Home Hygiene, UK
May 5, 2021	(<u>FREE Teleclass)</u>

