Dr. Dick Zoutman, Queen's University A Webber Training Teleclass

preventing Surgical Wound Infections; A funny thing happens on the way to the OR

Dick Zoutman, MD, FRCPC

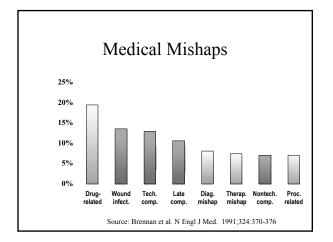
Queen's University School of Medicine & Kingston General Hospital, Kingston, Ontario, Canada

Hosted by Paul Webber paul@webbertraining.com

www.webbertraining.com

Practical Meaning of Quality

"80%" Good"


- 36 million checks drawn on wrong account every day
- 9 million credit card transaction errors daily
- 1000 fold increase in aviation deaths

"99% Good"

- Unsafe drinking water 15 minutes each day
- No electricity for almost 7 hours each month

"99.9% Good"

- 16,000 lost articles of mail per hour
- 2 unsafe landings per day at most major airports

Burden of Nosocomial Infections

Infection Type	Rate per 100 adm*	No. Infections per Year	Extra Days per Case *	Extra Bed Days/Yr	Cost per Infection	Cost per Year [§] 5000,000
Surgical Wound	1.39	53,421	8.2	438,052	\$4,100	\$219
Pneumonia	0.60	23,060	20.0	461,200	\$10,000	\$230
Bacteremia	0.27	10,377	24.0	249,048	\$12,000	\$125
Urinary	2.39	91,853	2.4	220,447	\$1,200	\$110
Other	1.07	41,123	4.8	197,390	\$2,400	\$97
Total		219,834		1,566,137		\$781

History of SSI Prevention and Control

• Before the mid-19th century

Surgery = purulent drainage, sepsis and often death

- 1843 Oliver Wendell Holmes "dirty hands" paper
- 1861 Ignaz Semmelweis handwashing with chloride lime solutions
- 1863 Louis Pasteur germ theory
- 1867 Joseph Lister antiseptic principles

Surgical Wound Infections Extra LOS

Time Period	Mean Days	Median Days
Gross Infection LOS	13.6	7.0
Attributable Infection LOS	10.2	4.5

Zoutman et al Inf Contr Hosp Epi 1999

Dr. Dick Zoutman, Queen's University A Webber Training Teleclass

SSI Risk Factors

- · Patient Risk Factors
 - Age
 - Nutritional status
 - Diabetes
 - Smoking
 - Steroids
 - Pre-op LOS
 - *Colonization with S. aureus
 - Peri-op transfusions
 - Remote infection

SSI Risk Factors

- · Operative Characteristics
 - Pre pantiseptic showers
 - *Pre ophair removal
 - Patient skin prep in the OR
 - Pre ophand/arm antisepsis
 - Infected/colonized OR staff
 - *Antimicrobial prophylaxis

SSI Risk Factors

- Operative Characteristics (Cont'd)
 - *OR Ventilation
 - Environmental cleaning in the OR
 - Microbial sampling of the OR
 - *Sterilization of equipment
 - · Flash sterilization
 - Scrub suits, masks, caps, boots
 - Gowns and drapes

SSI Risk Factors

- Operative Characteristics (Cont'd)
 - Asepsis in OR
 - Surgical technique
 - Drains
 - *Hypothermia <36°C
 - *Supplemental oxygen
 - Dressings
 - Discharge planning

Surgical Techniques & SSI Risk

- Maintaining effective hemostasis
- · Preventing hypothermia
- . Gently handling tissues
- Avoiding inadvertent entries into a hollow viscus
- Removing devitalized tissues
- . Using drains and suture material appropriately
- · Eradicating dead space
- . Managing the postoperative incision

Dr. Dick Zoutman, Queen's University A Webber Training Teleclass

Perioperative Complications following CABG

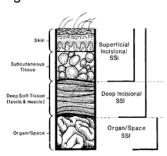
 Atrial fibrillation 	19.4%
• Ventilation >1 day	5.5%
• Readmission within 30 days	5.2%
 Surgical site infection 	2.6%
• Delirium	2.6%
• <u>Pneumonia</u>	2.5%
• Stroke	2.4%
• UTI	1.5%

Society of Thoracic Surgeons Database, 1999

NNIS Risk Index for SSI Surveillance

- ◆Wound class class III or IV 1 point
- ◆ASA score 3, 4, 5 1 point
- ◆Duration of surgery > cutpoint 1 point

SSI Rates* by Surgery Type and Risk Index Category


	Duration	Risk			
	<u>Cutpoint</u>	<u>0</u>	<u>1</u>	<u>2</u>	<u>3</u>
Abd Hysterectomy	2 hr	1.5	2.5	6.1	**
Knee Prosthesis	2 hr	0.9	1.2	2.0	**
Small Bowel Surgery	3 hr	5.6	7.5	9.8	14.8
CABG (chest & leg)	5 hr	0.7	3.5	5.8	17.5

* Infections per 100 procedures ** Risk index categories 2 & 3 combined Source: NNIS Semiannual Report, June 1999

Surgical Wound Surveillance

- · Of Proven Efficacy
- Risk Stratification
 - NNIS= 1 point for each of:
 - ASA Score>2
 - · Wound class contaminated/dirty
 - Procedure duration > 75th %ile
- · Case finding methods
- Post Becharge surveillance, day surgery
- · Reporting Rates to surgeons

Cross Section of Abdominal Wall Depicting CDC Classification of SSI

Supplemental Perioperative O₂

- DESIGN: Randomized controlled trial, double blind
- POPULATION: Colorectal surgery (N=500)
- INTERVENTION: 30% vs 80% inspired oxygen during and up to 2 hours after surgery
- RESULTS: SSI incidence 5.2% (80% O₂) vs 11.2% (30% O₂), p=0.01

Greif, R, et al , NEJM, 2000

Dr. Dick Zoutman, Queen's University A Webber Training Teleclass

Antimicrobial Prophylaxis: 4 Principles

- Use AMP agent for operations where use reduced SSI rates or for operations where an SSI would be catastrophic
- Use AMP agent that is safe, inexpensive, and bactericidal for likely contaminants
- Time initial dose of AMP agent such that bactericidal concentration is in serum and tissues by time skin incised
- . Maintain therapeutic levels during operation

Prophylaxis: Agents, Timing

- 1st and 2nd generation cephalosporins most commonly used AMP agents
- Administration of AMP agent ≤ 2 hours before incision reduced SSI risk (0.59% vs ≥ 3.3%)(Classen, 1992)
- General consensus: Administer AMP no more than 30 min before incision
 - Except CSEC, after cord clamping
 - Except vancomycin, about 1 hour before incision

Optimal Surgical Antimicrobial Prophylaxis

Includes 3 factors:

- Appropriate choice of antimicrobial agent
- Proper timing of administration of antimicrobial agent prior to surgical incision
- Limiting duration of antimicrobial administration following surgery

Impact of Timing of Antimicrobial Prophylaxis (AP)

• DESIGN: Prospective study

 POPULATION: Clean and clean contaminated procedures (N=2847)

Classen DC, et al. NEJM, 1992

Impact of Timing of AP on SSI Risk

(on 55 1 Kis	K		
<u>TIMING</u>	SSI INCIDENCE	<u>RR</u>	p value	
2-24 hours preop	3.8%			
<2 hours preop	0.6%	0.15	< 0.001	
3 hours postop	1.4%	0.37	0.11	
3-24 hours posto	p 3.3%	0.86	0.8	

Impact of Prolonged Surgical AP

• DESIGN: Prospective

• POPULATION: CABG patients (N=2641) Group 1: pts who received ≤ 48 hrs of

Group 2: pts who received > 48 hrs of AP

• OUTCOMES:

Incidence of SSI Isolation of a resistant pathogen

Harbarth S, et al. Circulation, 2000

Dr. Dick Zoutman, Queen's University **A Webber Training Teleclass**

Impact of Prolonged Surgical AP

• RESULTS: 57% patients received AP ≤48 hr 43% patients received AP >48 hr

SSI Incidence

• < 48 hr group: 8.7% (131/1502) versus •>48 hr group: 8.8% (100/1139), p=1.0

Antimicrobial resistant pathogen

• OR 1.6 (95% CI 1.1-2.6)

· Pseudolus: Wait!

· Hero: Yes?

Pseudolus: A brilliant idea!

Hero: Yes!

• Pseudolus: That's what we need, a brilliant

• From: "A Funny Thing Happened On The Way To The

Forum"

- By Stephen Sondheim

The Study Setting

- · Kingston General Hospital
- 466 tertiary care center
- · Hospital based prospective cohort study
- Data collected between 1994 and 2000 (6 years)
- 7,388 patients entered into study
- · 669 cases excluded
- 6,719 cases left to be analyzed

Surgical Wound Surveillance Methods

- Full Time Infection Control Practitioner
- Receives OR list each day
- Reviews chart and examines wound every 48-72 hours or more often if suspicious of infection
- CDC's definition of wound infection used
- Details of prophylaxis and selected risk factors recorded
- Review of patient care computer system for readmits with infection
- Monthly reports to each surgeon/ICC

Inclusion/Exclusion Criteria

Included

- CABG
- Cardiac Valves
- · Lung Resection
- AAA
- · Lower Limb Vascular
- · Colonic Resection
- · Abdo-Hysterectomy
- · Hip/Knee Replacement

Excluded

- · Emergency procedures
- · Wound class of 3 or 4
- Patients <18 years
- · Patient with 2 or more procedures requiring >1 incisions during the same operation
- · Patient on antibiotics 24 hour pre-op for infections or endocarditis prophylaxis
- · Incomplete data in chart

Outcome Variables

- **Effective First Prophylactic Dose** (EFPD):
 - Correct Drug (guidelines)
 - Correct Dose (guidelines)
 - Correct Route
 - Correct Timing (within 120 minutes pre-op)
- **Surgical Wound Infection**
 - CDC 1996 criteria

Dr. Dick Zoutman, Queen's University A Webber Training Teleclass

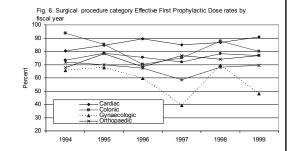
Hospital and Patient Variables

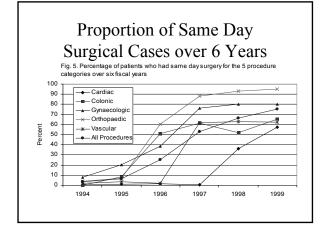
Hospital

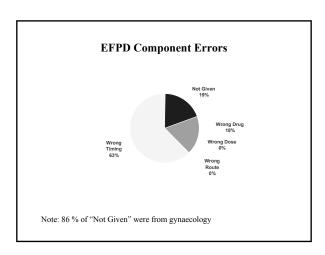
- Where the FPD given (OR/floor)
- Same day surgery
- Time between FPD and incision
- · Procedure Duration
- Net Duration of post-op SPA
- · Calendar Year
- · Class of Wound
- · Order Written
- Effective First Prophylactic Dose

Patient

- Age
- Gender
- · NNIS risk level
- Beta-lactam allergy
- · Pre-op days
- · Pre-op critical care days
- · Procedure category
- IV drugs given the day before surgery


Surgical Prophylactic Antibiotic Protocol


Procedure	1st Choice	Alternative
Coronary artery bypass grafting or valve replacement	cefazolin	vancomycin
Vascular surgery of abdominal aorta, groin vessels, or insertion of a prosthetic graft	cefazolin	vancomycin
Total joint replacement	cefazolin	vancomycin
Colorectal surgery	neomycin + erythromycin orally and/or metronidazole + gentamicin	neomycin + erythromycin orally and/or cefotetan
Thoracotomy for lung resection	cefazolin	vancomycin
Hysterectomy, abdominal	cefazolin	Doxycycline IV one dose or metronidazole + gentamicin


Analyses

- Univariate analysis:
 - · Produce frequencies and rates
 - · Assess distributions, normality, skewness
- Bivariate analysis:
 - Evaluation of associations (2 x 2 tables)
 - · Unadjusted odds ratios
 - · Stratified frequencies and rates
- Multivariate analysis:
 - Enter statistically significant variables into multiple logistic regression model
 - · EFPD, SSI as outcomes

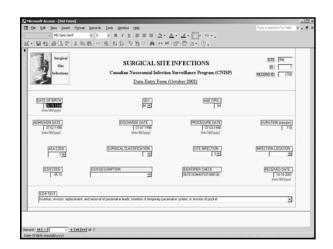
Effective First Prophylactic Dose Success Rate over 6 Years Fig. 8 Surpleal properture reterony Effective First Prophylactic Dose rates by

Dr. Dick Zoutman, Queen's University A Webber Training Teleclass

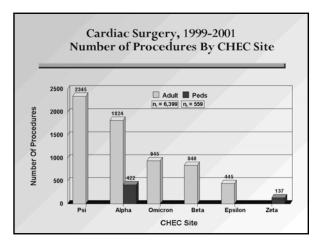
Effective First	Procedure	NNIS Risk	Time of first	Procedure
Prophylactic Dose	Duration	Index	Prophylactic dose	Category
0.69	1.0 (< 100 minutes) ^R	1.0 (0) ^R	1.0 (0-2 hours) ^R	1.0 (Orthopaedics) ^R
	1.4 (100- 139)*	1.9 (1)	1.3 (>2h early)*	1.4 (Cardiothoracic)
	2.0 (140- 199)	1.4 (2)*	1.4 (Post- Incision)*	10.1 (Colonic)
	3.6 (≥ 200)		2.8 (Not given)	1.8 (Gynaecologic)
				2.9 (Vascular)

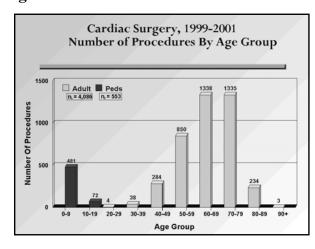
Procedure	Order	SPA Given	ß lactam	Same Da
	Written	in OR	allergy	Admit
Cardiothoracic	-	+	-	-
Vascular	+	+	=-	-
Colonic	+	+		-
Hysterectomy	+	-	-	-
Joint Replacement	+	+	-	+

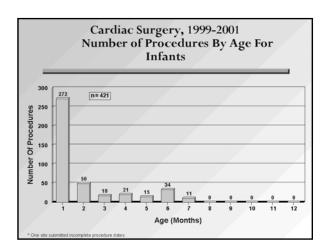
Results: Adjusted predictors of an SSI

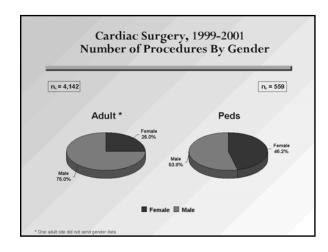

- EFPD: OR= 0.63 (p= 0.005)
- Procedure Duration over 200 minutes: OR= 3 (p< 0.001)
- NNIS Risk score of 1 OR= 2 (p< 0.004)
- Time of first dose relative to incision: For those that were given none, OR=2.9 (p=0.002)
- · Procedure category (when compared to orthopaedics):
 - Colonic OR=11.1 (p< 0.001)
 - Vascular OR= 3.6 (p< 0.001)
 - Gynaecologic OR= 2.6 (p = 0.005)

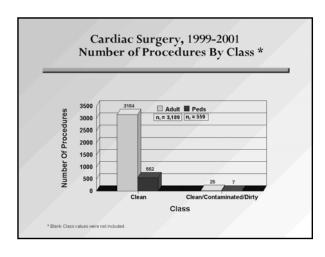
Interventions

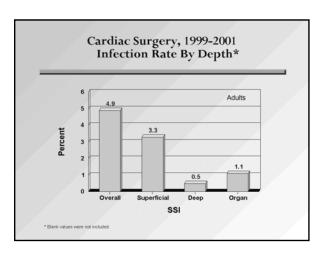

- Improving Awareness
 - Feedback EFPD rates to surgeons, OR Staff
- · Analysis of workflow
 - Preop assessment of "allergies"
 - Start IV's in one location preoperatively
 - OR stock of approved antibiotics
- Responsibility to write the order for SPA
 - Anesthesiology vs surgery

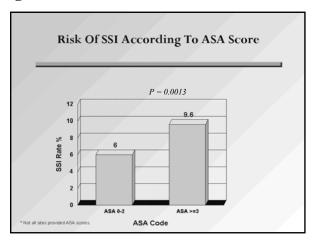

Application

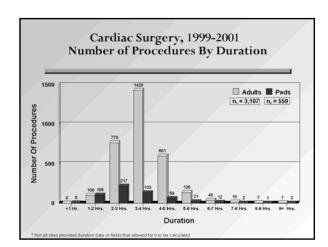

- · Results only applicable to KGH
- Determined patient and process variables detrimental and beneficial to administering an EFPD
- Using focal points can devise intervention
 - Educational materials
 - Feedback of practice info to physicians
 - Physical structure of administering environment

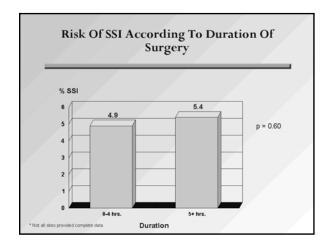


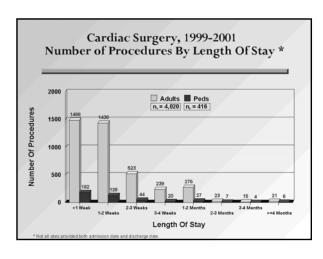

Dr. Dick Zoutman, Queen's University A Webber Training Teleclass

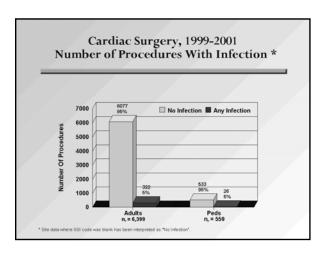


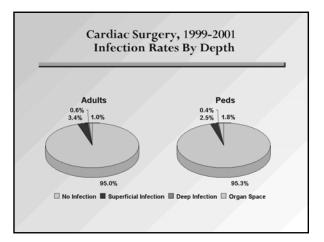







Dr. Dick Zoutman, Queen's University A Webber Training Teleclass





Dr. Dick Zoutman, Queen's University A Webber Training Teleclass

Other Winter 2005 Teleclasses

For more information, refer to www.webbertraining.com/schedule.cfm

- <u>February 15</u> **Endemic Influenza, Pandemic Influenza, and Avian Flu** with Dr. Stephano Lazzari
- February 17 Sad Cows and Englishmen, Predicaments and Predictions for Spongiform Encephalopathies with Dr. Corrie Brown
- February 24 Sneezes, Coughs and Drips: Respiratory and GI Outbreaks in Long Term Care with Dr. Chesley Richards
- March 10 Biocide Use in a Healthcare Environment with Dr. Jean-Yves Mailard
- March 17 WHO's Global Patient Safety Challenge 2005/2006 Preventing
 Healthcare Associated Infection; A Worldwide Strategy
 with Dr. Didier Pittet

Questions? Contact Paul Webber paul@webbertraining.com