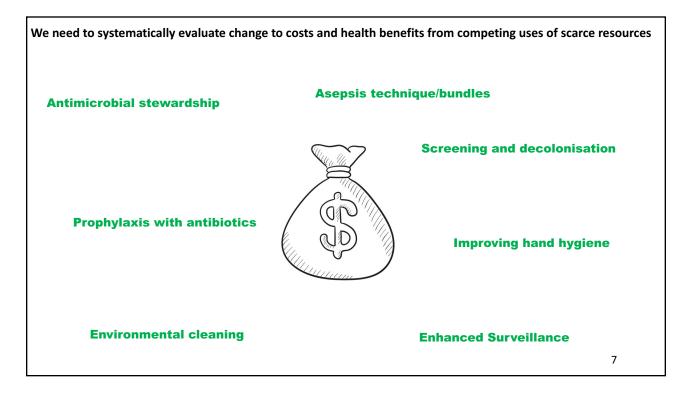
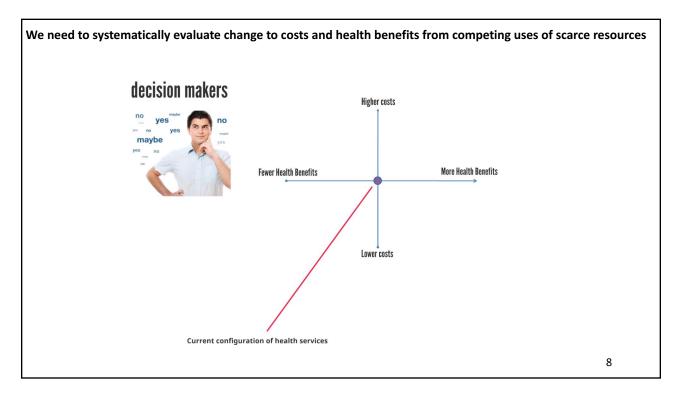
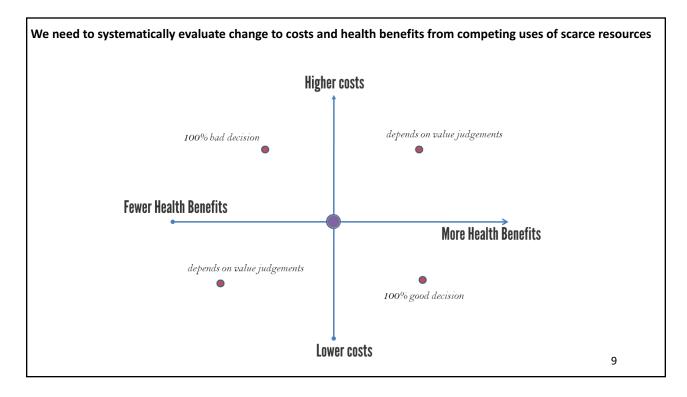

 Objectives:

 - Introduce the principles of cost effectiveness as applied to infection prevention initiatives

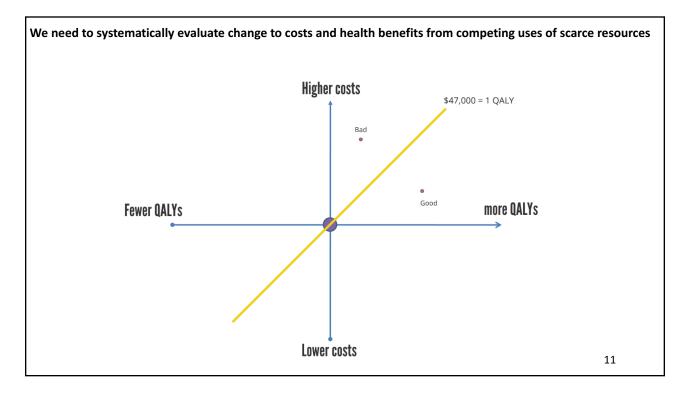

 - Review some key papers on the topic

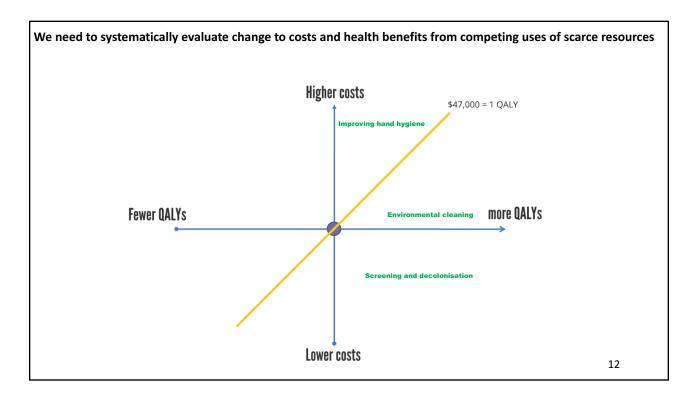

 - Present findings of recent studies on the cost-effectiveness of using temporary single-patient rooms in UK, Australia & Singapore















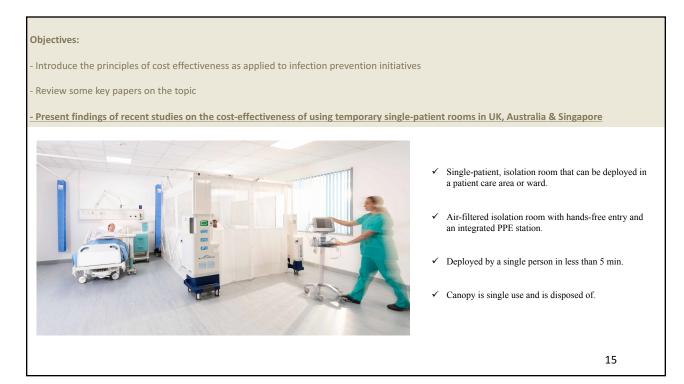


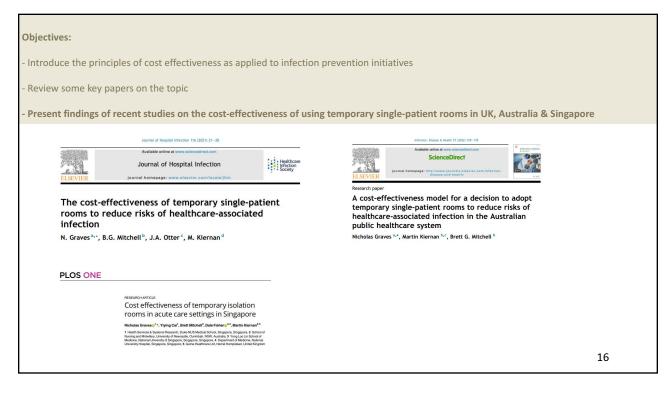



Hosted by Jane Barnett jane@webbertraining.com www.webbertraining.com



S. Manoukian<sup>a,</sup>, S. Stewart<sup>b</sup>, S. Dancer<sup>c</sup>, N. Graves<sup>d</sup>, H. Mason<sup>a</sup>, A. McFarland<sup>b</sup>, C. Robertson<sup>e</sup>, J. Reilly<sup>b</sup>


INVITED ARTICLE ANTIMICROBIAL RESISTANCE


A Systematic Review of Quasi-Experimental Study Designs in the Fields of Infection Control and Antibiotic Resistance Anthony B. Harris.<sup>12</sup> Ebbing Lautenbach.<sup>14</sup> and Eli Perencevich<sup>12</sup> Health Economics

RESEARCH ARTICLE 📄 Open Access 🛛 😨 🚺

#### Estimating the opportunity costs of bed-days

Frank G. Sandmann 🕿 Julie V. Robotham, Sarah R. Deeny, W. John Edmunds, Mark Jit First published: 06 November 2017 | https://doi.org/10.1002/hec.3613 | Citations: 18 14





| RATIONALE                                                                                                                                                                                                                                                                                                                                                                                          |                             |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|--|
| Clinical guidelines recommend single-room isolation for patients with multidrug-resistant pathogens.                                                                                                                                                                                                                                                                                               |                             |  |  |  |  |  |  |
| Plausible mechanisms for benefit.                                                                                                                                                                                                                                                                                                                                                                  |                             |  |  |  |  |  |  |
| Research evidence is patchy and the marginal effects of isolation are difficult to disentangle from a bundled                                                                                                                                                                                                                                                                                      | d strategy.                 |  |  |  |  |  |  |
| It is challenging to establish by experiment the role of single-room isolation on risks of HAI.                                                                                                                                                                                                                                                                                                    |                             |  |  |  |  |  |  |
| Two systematic reviews provide some evidence that isolation rooms are effective at reducing risks of HAI.                                                                                                                                                                                                                                                                                          |                             |  |  |  |  |  |  |
| Cooper BS, Stone SP, Kibbler CC, Cookson BD, Roberts JA,<br>Medley GF, et al. Isolation measures in the hospital management<br>of methicillin resistant Staphylococcus aureus (MRSA): systematic<br>review of the literature. BMJ 2004;329:533.<br>Stiller A, Salm F, Bischoff P, Gastmeie<br>hospital ward design and healthcare-as<br>systematic review and meta-analysis.<br>Control 2016;5:51. | sociated infection rates: a |  |  |  |  |  |  |
| Research exists on the adverse effects of isolation showing that the mental well-being of patients is affected                                                                                                                                                                                                                                                                                     | d.                          |  |  |  |  |  |  |
| The aim is to model the cost-effectiveness of adding 'Rediroom' into UK National Health Service (NHS) hospitals.                                                                                                                                                                                                                                                                                   |                             |  |  |  |  |  |  |
| I will also report results from Australia & Singapore                                                                                                                                                                                                                                                                                                                                              |                             |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                    | 17                          |  |  |  |  |  |  |

# 

#### **METHODS**

Infection types

- o All HAI
- o bloodstream infection
- gastrointestinal infection
- o lower respiratory tract infection
- o pneumonia
- o surgical site infection
- o urinary tract infection
- $\circ$  other infections

#### **METHODS**

There is no information available for effectiveness

Estimates between zero and 100% were available

If 250 cases of HAI per 100,000 occupied bed-days under baseline conditions... then inputting an effectiveness estimate of 20% would reduce the number of cases by 50.

The model was used to output new values for the outcomes based on the effectiveness scenario chosen.

- $\circ$  number of patients with an HAI
- $\circ$   $\,$  number of acute care bed-days used to manage the consequences of HAI  $\,$
- $\circ$  monetary value of these bed-days
- $\circ~$  deaths associated with patients with an HAI
- $\,\circ\,\,$  years of life lost to HAI.

The model was also programmed to include the cost of purchasing and maintaining the temporary isolation rooms.

Because the durations of HAI are relatively short use of preference utility weights to show QALYs not done

Two cost-effectiveness thresholds were used

maximum willingness to pay of £20,000 (NICE)

Claxton K, Martin S, Soares M, Rice N, Spackman E, Hinde S, et al. Methods for the estimation of the NICE cost effectiveness threshold. UK: Centre for Health Economics, University of York; 2013.

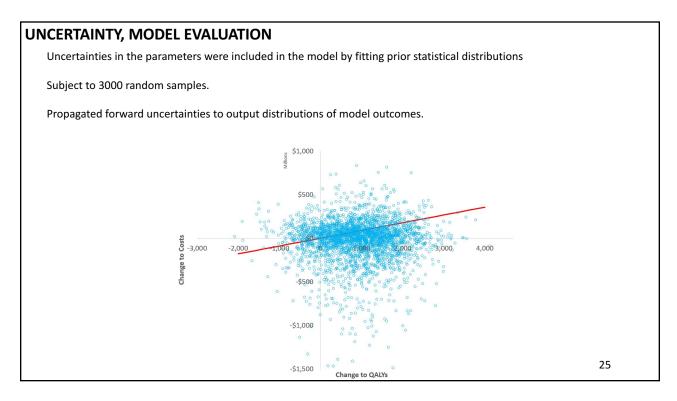
Claxton et al. suggests that an operational value adopted by the NHS is close to £13,000

20

| ΓΑ                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECONI                                                                                                                                                                                           |
| Project Team                                                                                                                                                                                    |
| Chief Investigator: <u>Professor Jacqui Reilly</u>                                                                                                                                              |
| GCU Co-investigators: <u>Dr Helen Mason</u> (Yunus Centre)                                                                                                                                      |
| External Collaborators: Professor Chris Robertson (University of Strathclyde), Professor Nick Graves (Queensland University of Technology)                                                      |
| GCU researchers funded by study: <u>Sally Stewart</u> (Research Project Manager), <u>Dr Sarkis Manoukian</u> (Research Fellow<br>Yunus Centre), <u>Lynne Hachr</u> (Administrator/Data Manager) |
| Funder: NHS Health Protection Scotland                                                                                                                                                          |
| Objectives                                                                                                                                                                                      |
| The study had four objectives                                                                                                                                                                   |
| 1 Determine the incidence and type of HAI in hospital.                                                                                                                                          |
| 2 To estimate the impact of HAI on patient care in hospital.                                                                                                                                    |
| 3 To investigate the impact of HAI on patient care post discharge                                                                                                                               |
| 4 To develop a framework to support decision making for future investment in Infection Prevention and Control (IPC)                                                                             |
|                                                                                                                                                                                                 |

| Variable                                    | Estimate   | Prior distribution   | Source |
|---------------------------------------------|------------|----------------------|--------|
| Cases of HAI baseline/100,000 OBD           |            |                      |        |
| Bloodstream                                 | 45         | Normal (45, 3.19)    | [22]   |
| Gastrointestinal                            | 39         | Normal (39, 3.10)    |        |
| Lower respiratory                           | 42         | Normal (42, 3.11)    |        |
| Pneumonia                                   | 24         | Normal (24, 2.32)    |        |
| Surgical site                               | 35         | Normal (35, 2.86)    |        |
| Urinary tract                               | 51         | Normal (51, 3.42)    |        |
| Other                                       | 14         | Normal (14, 1.76)    |        |
| Excess LOS (days), mean (SD)                |            |                      |        |
| Bloodstream                                 | 11.4 (2.8) | Gamma (16.58, 0.69)  | [23]   |
| Gastrointestinal                            | 6 (3.4)    | Gamma (3.11, 1.93)   |        |
| Lower respiratory                           | 7.3 (2.8)  | Gamma (6.80, 1.07)   |        |
| Pneumonia                                   | 16.3 (4.5) | Gamma (13.12, 1.24)  |        |
| Surgical site                               | 9.8 (2.7)  | Gamma (13.17, 0.74)  |        |
| Urinary tract                               | 0          |                      |        |
| Other                                       | 14 (9.1)   | Gamma (2.36, 5.91)   |        |
| Log <sub>10</sub> of relative risk of death |            |                      |        |
| Bloodstream infection                       | 7.84       | Normal (2.06, 0.18)  | [23]   |
| Gastrointestinal infection                  | 4.94       | Normal (1.6, 0.23)   |        |
| Lower respiratory tract infection           | 5.20       | Normal (1.65, 0.2)   |        |
| Pneumonia                                   | 6.72       | Normal (1.91, 0.27)  |        |
| Surgical site infection                     | 2.51       | Normal (0.92, 0.3)   |        |
| Urinary tract infection                     | 2.36       | Normal (0.86, 0.26)  |        |
| Other                                       | 3.46       | Normal (1.24, 0.54)  |        |
| Other parameters                            |            |                      |        |
| Cost per bed-days (mean, SD)                | 799 (536)  | Gamma (2.23, 358.92) | [27]   |
| Mean age of patients (years)                | 66         | Fixed                |        |
| Life expectancy                             |            | Fixed                | [26]   |
| Males                                       | 85         |                      |        |
| Females                                     | 87         |                      |        |
|                                             |            |                      |        |
|                                             |            |                      |        |
|                                             |            |                      |        |
|                                             |            |                      |        |

| infection                                |              | due to  | healthcare-associated |           |         |   |  |  |
|------------------------------------------|--------------|---------|-----------------------|-----------|---------|---|--|--|
| Infection                                | Discharged   | Died    | RR (95% CI)           |           |         |   |  |  |
| Bloodstream                              | 97           | 44      | 7.84 (5.50-11.16)     |           |         |   |  |  |
| Gastrointestinal                         | 98           | 24      | 4.94 (3.17-7.71)      |           |         |   |  |  |
| Lower respiratory                        | 115          | 30      | 5.20 (3.48-7.75)      |           |         |   |  |  |
| Pneumonia                                | 52           | 19      | 6.72 (3.98-11.35)     |           |         |   |  |  |
| Surgical site                            | 108          | 12      | 2.51 (1.39-4.55)      |           |         |   |  |  |
| Urinary tract                            | 154          | 16      | 2.36 (1.39-4.55)      |           |         |   |  |  |
| Other                                    | 25           | 4       | 3.46 (1.21-9.95)      |           |         |   |  |  |
| Capital cost of th<br>Five-year life spa | n            |         |                       |           |         |   |  |  |
| one canopy costs                         | 5 £300/1501a | teu pa  | lient                 |           |         |   |  |  |
|                                          |              |         |                       |           |         |   |  |  |
| Proportion of ne                         | wly admitte  | ed pati | ents who would r      | eed to be | isolate | d |  |  |

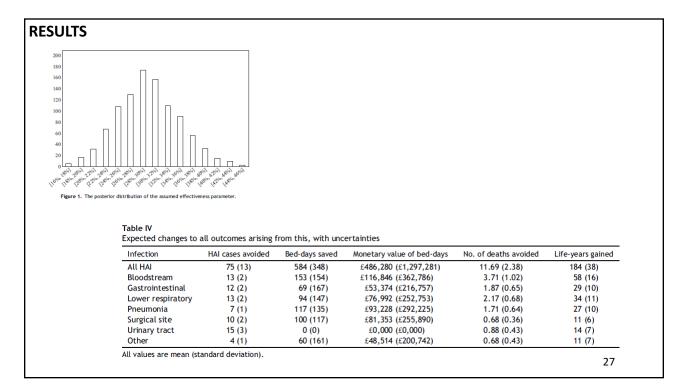

#### **EFFECTIVENESS**

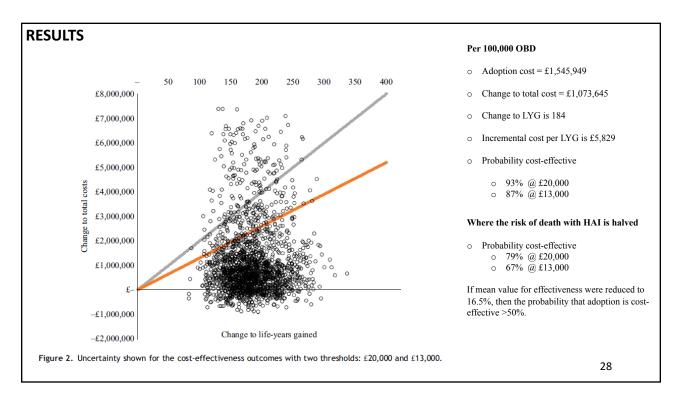
Evidence for the effect of single-room isolation alone on reducing HAI rates is scarce.

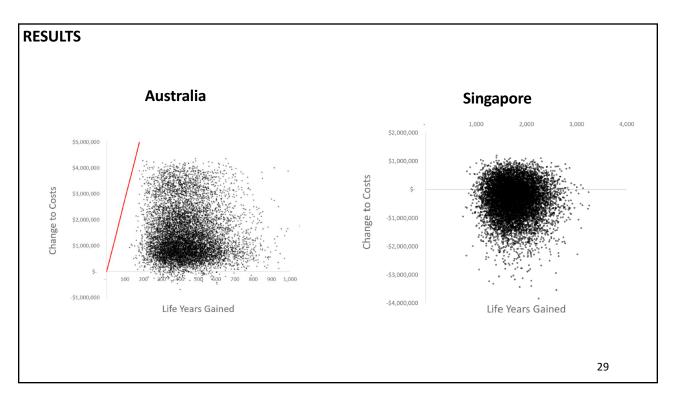
This study modelled potential reductions in cases at 30% on average with a standard deviation of 5%.

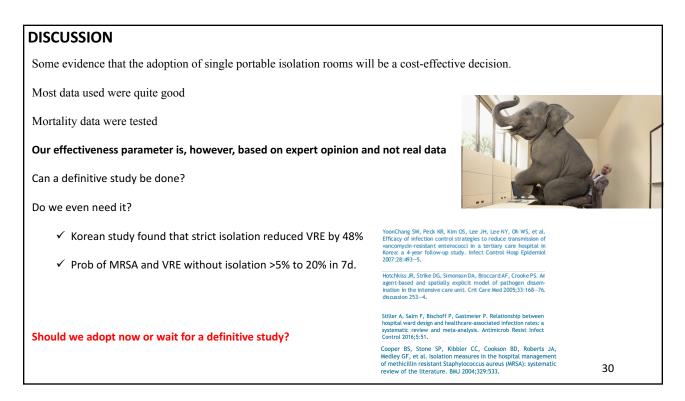
As guidelines across the world recommend single-room isolation for a range of multidrug-resistant pathogens and pathogens spread via the droplet route, we assumed that there was a substantial benefit.

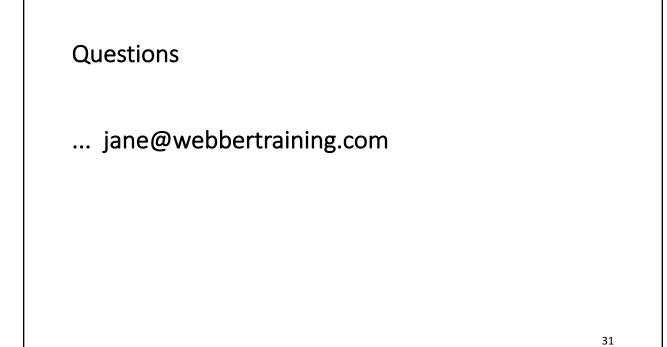
24





#### **SCENARIO ANALYSES**


Halved mortality risks


Found minimum threshold hold for effectiveness at which adoption would be cost-effective


26











| www.webbertraining.com/schedulep1.php |                                                                                                                                                                                         |  |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| September 15, 2022                    | INFLUENZA: WHAT WE CAN EXPECT<br>Speaker: Prof. Rodney Rohde, Texas State University                                                                                                    |  |  |  |
| September 20, 2022                    | ( <u>European Teleclass)</u><br>RESERVOIRS OF PATHOGENS: THE MICROBIOLOGICAL RISKS OF<br>RESPIRATORY MEDICAL DEVICES<br>Speaker: Professor Colum Dunne, University of Limerick, Ireland |  |  |  |
| October 11, 2022                      | ( <u>European Teleclass)</u><br>ADDRESSING MRSA BACTERAEMIA IN A HIGHLY ENDEMIC HOSPITAL – A<br>BEHAVIOUR CHANGE APPROACH<br>Speaker: Prof. Michael Borg, Mater Dei Hospital, Malta     |  |  |  |
| October 13, 2022                      | BUILDING (ENHANCING) EVIDENCE-BASED ANIMAL-ASSISTED THERAPY<br>PROGRAMS IN HUMAN HEALTHCARE<br>Speaker: Prof. Jason Stull, College of Veterinary Medicine, The Ohio State<br>University |  |  |  |

