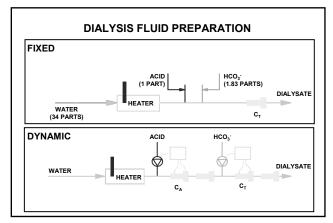
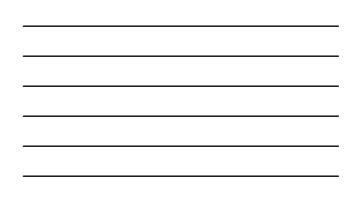
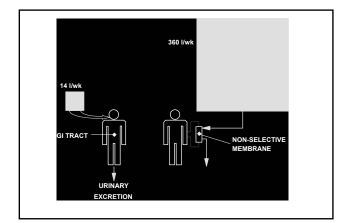
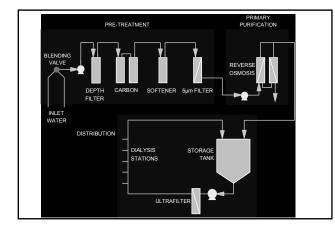


OVERVIEW


- WHAT IS THE ROLE OF DIALYSIS FLUID (DIALYSATE) IN HEMODIALYSIS?
- WHY IS THE MICROBIOLOGICAL QUALITY OF THE DIALYSIS FLUID IMPORTANT?
- HOW CAN SAFE LEVELS OF MICROBIOLOGICAL CONTAMINANTS BE ASSURED?







UBSTANCES IN DIAL	YSATE	SUBSTANCES TOXIC IN DI	ALYSIS
CALCIUM	2	ALUMINUM	0.01
MAGNESIUM	4	CHLORAMINES	0.10
SODIUM	70	FREE CHLORINE	0.5
POTASSIUM	8	COPPER	0.10
OXIC SUBSTANCES (SDWA)	FLUORIDE	0.20
ANTIMONY	0.006	NITRATE (as N)	2.0
ARSENIC	0.005	SULFATE	100
BERYLLIUM	0.0004	ZINC	0.10
BARIUM	0.1		
CADMIUM	0.001	MICROBIOLOGICAL CONT.	AMINANT
CHROMIUM	0.014	BACTERIA	200
LEAD	0.005	ACTION LEVEL	50
MERCURY	0.0002	ENDOTOXIN	2
SELENIUM	0.09	ACTION LEVEL	
SILVER	0.005		
THALIUM	0.002		

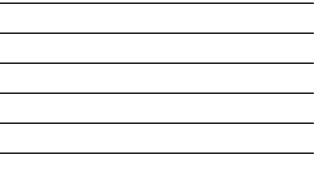
- REQUIRED FOR ALL DIALYSIS FACILITIES
- MUST PRODUCE WATER OF APPROPRIATE QUALITY FROM THE WORST CASE FEED WATER
- MUST MEET THE PEAK DEMAND FOR WATER (SOME EXCESS CAPACITY IS DESIRABLE)
- SHOULD BE DESIGNED FOR EASE OF MAINTENANCE

DIALYSIS FLUID QUALITY

AAMI RD52 - DIALYSATE FOR HEMODIALYSIS

LIMITS FOR CHEMICAL CONTAMINANTS

• SAME AS FOR WATER (RD62:2001)

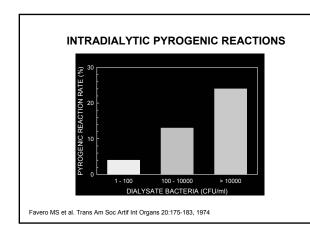

LIMITS FOR MICROBIOLOGICAL CONTAMINANTS

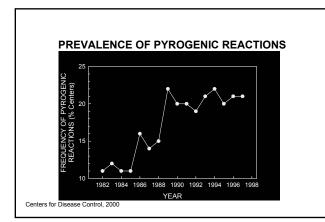
- BACTERIA: 200 CFU/ml
 ACTION LEVEL: 50 CFU/ml
- ENDOTOXIN: 2 EU/ml ACTION LEVEL: 1 EU/ml

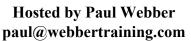
DIALYSIS FLUID

DEFINITIONS OF MICROBIOLOGICAL QUALITY

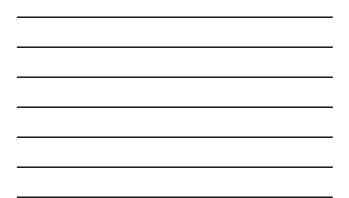
	Bacteria (cfu/ml)	Endotoxin (EU/ml)
AAMI Recommended Practice	200	2
ERA-EDTA Best Practice Guidelines	100	0.25
Ultrapure	0.1	<0.03
Sterile	10 ⁻⁶	<0.03


SEPTICEMIA AND PYROGENIC REACTIONS


BACTERIA

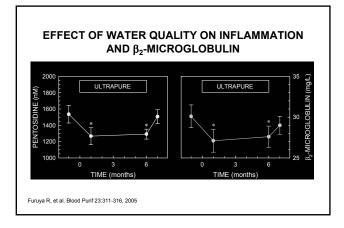

- > DO NOT CROSS DIALYZER MEMBRANES
- MAY INFECT BLOOD COMPARTMENT DURING PROCESSING OF DIALYZER FOR REUSE
- CAN CAUSE SEPSIS CHARACTERIZED BY WATER-BORNE ORGANISMS


ENDOTOXIN


- > FRAGMENTS MAY CROSS DIALYZER MEMBRANES
- > MAY CONTAMINATE BLOOD COMPARTMENT DURING
- PROCESSING OF DIALYZER FOR REUSE
- CAUSE PYROGENIC REACTIONS CHARACTERIZED BY SHAKING CHILLS, FEVER AND HYPOTENSION



DIALYZER REUSE: OUTBREAKS OF SEPTICEMIA AND PYROGENIC REACTIONS


INCORRECT GERMICIDE CONCENTRATION	5/10
INAPPROPRIATE GERMICIDE	2/10
USE OF TAP WATER TO CLEAN OR RINSE DIALYZERS	3/10
USE OF MULTIPLE GERMICIDES	1/10
USE OF WATER NOT MEETING AAMI STANDARDS	10/10

Arduino MJ et al. Dial Transplant 22:652-656, 1993

CHRONIC INFLAMMATION

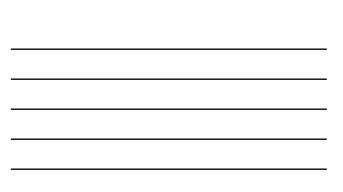
- CYTOKINE-INDUCING SUBSTANCES (ENDOTOXIN FRAGMENTS, PEPTIDOGLYCANS, MURAMYL DIPEPTIDES, EXOTOXINS)
 - > CROSS LOW- AND HIGH-FLUX MEMBRANES
 - > STIMULATE MONONUCLEAR CELL CYTOKINE PRODUCTION
 - > ARE ASSOCIATED WITH INCREASED LEVELS OF ACUTE
 - PHASE PROTEINS (C-REACTIVE PROTEIN) > PRODUCE A MICROINFLAMMATORY STATE THAT MAY PLAY A ROLE IN β_2 -MICROGLOBULIN AMYLOIDOISIS,
 - ATHEROSCLEROSIS, AND MALNUTRITION

Hosted by Paul Webber paul@webbertraining.com

RISK OF DEVELOPING DIALYSIS-ASSOCIATED AMYLOIDOSIS WITH CONTAMINATED DIALYSIS FLUID

	ODDS RATIO (95% CI)
β2-MICROGLOBULIN AMYLOIDOSIS	3.308 (1.45 – 6.35) p = 0.031
BONE CYSTS	1.85 (1.00 – 3.42) p = 0.047
CARPAL TUNNEL SYNDROME	2.86 (1.35 – 6.07) p = 0.006
ARTHROPATHY	9.04 (2.06 - 39.6) p = 0.004
	MINATED DIALYSIS FLUID: 550 CFU/ STANDARD DIALYSIS FLUID: 65 CFU/

POTENTIAL ADVANTAGES OF WATER AND DIALYSIS FLUID OF HIGH MICROBIOLOGICAL PURITY


- LESS INFLAMMATORY STIMULUS
- REDUCED INCIDENCE OF β₂-MICROGLOBULIN AMYLOID DISEASE
- IMPROVED RESPONSIVENESS TO ERYTHROPOIETIN
- IMPROVED NUTRITIONAL STATUS
- BETTER PRESERVATION OF RESIDUAL RENAL FUNCTION

Tubing from a dialysis machine with > 10⁶ CFU/ml *P. aeruginosa, Enterobacter cloacae* and *Candida parapsilosis* Carr J. Hospital Infections Program, CDCP

	CFU/cm ²	TOTAL BACTERIA/cm
TUBING FROM		
WATER PATH	23	1.4 x 10 ⁵
BICARBONATE PATH	17	1.54 x 10 ⁵
DIALYSIS FLUID PATH	12	3.2 x 10 ⁵
DIALYSIS FLUID	0	0

Hosted by Paul Webber paul@webbertraining.com

STRATEGIES FOR BACTERIAL CONTROL

- SYSTEM DESIGN
- SYSTEM OPERATION
- DISINFECTION

DESIGN TO LIMIT BACTERIAL PROLIFERATION

• USE A DISTRIBUTION LOOP

AVOID STAGNANT FLOW

- > NO DEAD ENDS, PRESSURIZING TANKS, OR MULTIPLE BRANCHES
- > SIZE PIPES TO MAINTAIN VELOCITY > 3 ft/sec
- INCLUDE BACTERIAL CONTROL DEVICES
 VULTRAFILTERS
 - > ON-LINE HOT WATER DISINFECTION

IF A STORAGE TANK IS USED

- > MINIMUM SIZE NEEDED TO ENSURE TURN-OVER OF WATER
- > TIGHT-FITTING LID WITH A HYDROPHOBIC 0.2 µm FILTER AIR VENT
- > CONICAL BOTTOM WITH DRAIN AT LOWEST POINT
- > ADEQUATE DISINFECTION MECHANISM

DISINFECTION

- DISINFECTION SCHEDULES SHOULD BE DESIGNED TO **PREVENT**, NOT ELIMINATE, CONTAMINATION WITH BACTERIA AND BIOFILM.
- DISINFECTION SHOULD INCLUDE THE WATER STORAGE AND DISTRIBUTION SYSTEM, CONCENTRATE PREPARATION AND DISTRIBUTION SYSTEM, AND THE PROPORTIONING SYSTEM.
- MONITORING WITH CULTURES AND ENDOTOXIN LEVELS IS INTENDED TO VERIFY THE ADEQUACY OF DISINFECTION, NOT INDICATE WHEN DISINFECTION IS NEEDED.

MONITORING FOR COMPLIANCE WITH AAMI STANDARDS

ONS

CULTURING CONDITION
TECHNIQUE
MEDIUM

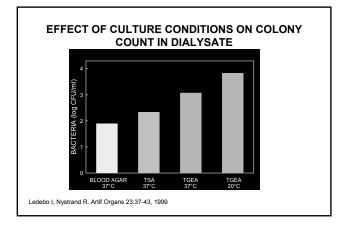
TIME

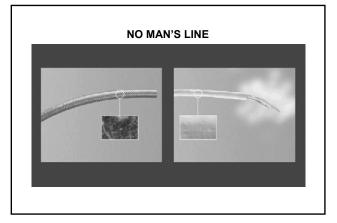
TEMPERATURE

ENDOTOXIN MEASUREMENT TECHNIQUE

MEMBRANE FILTER, SPREAD PLATE TRYPTIC SOY AGAR OR EQUIVALENT 35 - 37°C 48 hours

LIMULUS AMEBOCYTE LYSATE ASSAY

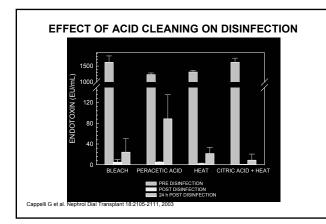

SAMPLE COLLECTION


- SAMPLE PORTS SHOULD PROVIDE DIRECT ACCESS TO THE FLUID OF INTEREST
- FLUSH THE SAMPLE PORT FOR AT LEAST 30 sec BEFORE COLLECTING THE SAMPLE
- DO NOT DISINFECT THE SAMPLE PORT
- COLLECT THE SAMPLES DIRECTLY INOT A STERILE ENDOTOXIN-FREE CONTAINER
- ASSAY SAMPLES WITHIN 30 min OR STORE AT $\leq 5\,^{\circ}\text{C}$ FOR UP TO 24 hours.

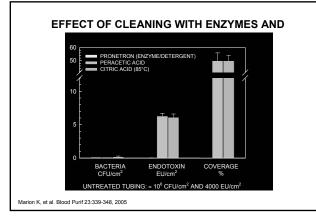
ALTERNATIVES TO SPREAD-PLATE CULTURES

CALIBRATED LOOP

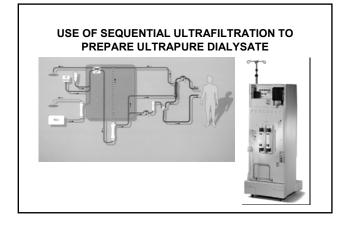
- STANDARD TECHNIQUE IN CLINICAL LABORATORIES
- SAMPLE VOLUME IS TOO SMALL FOR REQUIRED SENSITIVITY
- SPECIFICALLY PROHIBITED FOR DIALYSIS APPLICATIONS
- PADDLES
 - CONVENIENT FOR ON-SITE TESTING
 - REQUIRE A MAGNIFIER AND LIGHT-SOURCE FOR ACCURATE
 - ENUMERATION OF COLONIES
 - MAY GIVE AN APPARENT FALSE NEGATIVE WITH HEAVILY CONTAMINATED SAMPLES
- MEMBRANE FILTRATION
 - VERY SENSITIVE
 - REQUIRES FILTRATION SYSTEM AND LARGE SAMPLE VOLUMES


EFFECTS OF CLEANING AND DISINFECTION ON BIOFILM

- Silicone rubber tubing allowed to develop biofilm by exposure to dialysate (187 CFU/ml, 1.8 EU/ml).
- Biofilm averaged 15 μm thickness, covered 96% of surface, and contained 1.7 x 10⁹ CFU/ml (*Pseudomonas sp.*).
- Tubing was cleaned with 3% citric acid at 20°c for 5 minutes before disinfection for 40 minutes.


Marion-Ferey K, et al. J Hosp Infect 53:64-71, 2003

Hosted by Paul Webber paul@webbertraining.com


EFFECTS OF CLEANING AND DISINFECTION ON BIOFILM					
CLEANING	DISINFECTION	BIOFILM (۵%) RESIDUAL			UAL
		THICKNESS	COVERAGE	CFU/cm ²	EU/cm ²
-	BLEACH (0.3%, 20°C)	50	58	22	354
CITRIC ACID	BLEACH (0.3%, 20°C)	60	65	< 1	22
-	ACTRIL (3%, 20°C)	19	15	8.6 x 10 ³	470
CITRIC ACID	ACTRIL (3%, 20°C)	54	68	2.1 x 10 ³	70
-	CITRIC ACID (3%, 90°C)	0	7	3.6 x 10 ⁵	2618
-	WATER (90°C)	0	7	9.1 x 10 ⁴	1400
CITRIC ACID	BLEACH (3% 20°C)	67-100	98	18	27
Marion-Ferey K, et al. J Hosp Infect 53:64-71, 2003					

SUMMARY

- Hemodialysis patients are highly sensitive to contaminants in the water used for dialysis fluid and dialyzer reprocessing.
- In addition to the risk of septicemia and pyrogenic reactions, microbiological contaminants may contribute to many problems common in hemodialysis patients, including β₂microglobulin amyloidosis, anemia, and malnutrition.
- Avoiding complications from microbiological contaminants requires a well designed water purification and distribution system, a rigorous disinfection schedule, and constant attention to water quality.

Full Year Subscription \$700 or £400

- Register for all 2006 teleclasses at once
- Get >30 teleclasses for the price of 20
- Get access to all 2006 teleclass recordings, PowerPoint files and handouts
- Get access to some private teleclass recordings available exclusively to Full Year Subscribers
- Support infection control education initiatives in >20 developing countries

For more information e mail paul@webbertraining.com