





OVERD

| DEFINITIONS |
|-------------|
|-------------|

- Resistance / tolerance / insusceptibility??
- Resistance: surviving exposure to a biocide concentration that will kill the rest of the population Russell, Lancet Infect Dis 2003: 3: 794-803
- Tolerance: inhibited but not killed Phenotypic tolerance: transient conditions (biofilm) Chapman. Int Biodeter Biodegrad 2003; 51: 133-8
- · Insusceptibility: intrinsic property
- Resistance in practice: bacterial survival following microbicide challenge at "in use" concentration.

# **EVIDENCE OF RESISTANCE - in practice** Surviving bacteria isolated following biocidal challenges Cookson et al. Lancet 1991: 337: 1548-9

- Triclosan bath
- Triclosan handwash
- Webster et al. J Paediatr Child health 1994: 30: 59-64 Chlorhexidine Nakahara & Kozukue. Sbl Bakt Hyg, I. Abt Orig A 1981; 251: 177-84
- QACs
- Geftic et al. Appl Environ Microbiol 1979; 39: 505-10 Griffiths et al. J Appl Microbiol 1997; 82: 519-26
- · Glutaraldehyde

#### **EVIDENCE OF RESISTANCE – in practice**

Automated washer disinfectors (Martin & Maillard 2006)

| Bacterial strains             | Location                | Time (min) to achieve 5 Log <sub>10</sub><br>reduction |                           |  |
|-------------------------------|-------------------------|--------------------------------------------------------|---------------------------|--|
|                               |                         | Chlorine<br>dioxide* 2.25%                             | Hydrogen<br>peroxide 7.5% |  |
| Bacillus subtilis (veg)       | Rinse water             | >60                                                    | 60                        |  |
| Micrococcus luteus            | Rinse water             | 30                                                     | 0.5                       |  |
| Streptococcus<br>sanguinis    | Endoscope<br>connectors | 30                                                     | 0.5                       |  |
| Streptococcus<br>mutans       | Drain area              | 5                                                      | 0.5                       |  |
| Staphylococcus<br>intermedius | Drain area              | 30                                                     | 0.5                       |  |

| RESISTANCE MECHANISM                      | IS                          |
|-------------------------------------------|-----------------------------|
| (A) IMPERMEABILITY                        |                             |
| Intrinsic                                 |                             |
| - spore coat and cortex                   |                             |
| - mycobacteria mycoyl-arabinogalactan     | GTA, QACs                   |
| - outer envelope in Gram-negative         | QACs, biguanides, phenolics |
| Acquired                                  |                             |
| - change in lipopolysaccharides / membra  | ne fatty acids              |
| - change in outer membrane protein (porin | s) QACs, biguanides         |
| - change in arabinogalactan composition   | -                           |
|                                           |                             |
|                                           |                             |
|                                           |                             |

| VIDEI<br>MRSA | NCE C        | )FRE        | SISTANC                      | DCC | - in pr<br>(Williams & | actic<br>Maillard | 2006)                        |
|---------------|--------------|-------------|------------------------------|-----|------------------------|-------------------|------------------------------|
| MSSA          |              |             |                              |     |                        | MRSA              |                              |
|               | MIC<br>(ppm) | CT<br>(sec) | log <sub>10</sub> R<br>(±SD) |     | MIC<br>(ppm)           | CT<br>(sec)       | log <sub>10</sub> R<br>(±SD) |
| 13            | 325          | 30          | 3.85 (2.19)                  | 49  | 400                    | 30                | 5.81 (1.15                   |
|               |              | 60          | 5.96 (0.36)                  |     |                        | 60                | 6.38 (0.12                   |
| 14            | 300          | 30          | 2.01 (0.37)                  | 52  | 400                    | 30                | 1.75 (1.76                   |
|               |              | 60          | 6.16 (0.33)                  |     |                        | 60                | 6.14 (0.09                   |
| 51            | 325          | 30          | 2.76 (1.53)                  | 17  | 400                    | 60                | 3.46 (1.94                   |
|               |              | 60          | 5.26 (2.05)                  |     |                        | 120               | 5.93 (0.07                   |
| 47            | 300          | 30          | 2.45 (0.84)                  | 55  | 350                    | 30                | 5.22 (1.66                   |
|               |              | 60          | 6.46 (0.31)                  |     |                        | 60                | 6.41 (0.24                   |
| Control       | 225          | 30          | 2.27 (1.74)                  |     |                        |                   |                              |

6.19 (0.11)

9518

60













| RESISTANCE MECHANISMS |        |         |           |             |       |        | CARD<br>UNIVER<br>PRIFYSE<br>CARD |  |
|-----------------------|--------|---------|-----------|-------------|-------|--------|-----------------------------------|--|
| More than             | one me | chanism | s involve | d           |       |        |                                   |  |
|                       |        |         | N         | IIC (µg/ml) | )     |        |                                   |  |
| E. Coli               | TCS    | TCS +   | TCS +     | TCS +       | TCS + | TCS +  | TCS +                             |  |
| ATCC                  | alone  | CCCP    | OVA       | EDTA        | CCCP  | CCCP + | OVA +                             |  |
| 1053                  |        |         |           |             | +OVA  | EDTA   | EDTA                              |  |
| Standard              | 0.1    | ND      | ND        | ND          | ND    | ND     | ND                                |  |
| TM1                   | >1000  | 25      | >1000     | 25          | 25    | 10-50  | 10-25                             |  |
| TM2                   | >1000  | 50      | >1000     | 25          | 25    | 10-50  | 10-25                             |  |
| ТМЗ                   | >1000  | 250     | >1000     | 25          | 25    | 10-50  | 10-25                             |  |
| TM4                   | >1000  | 25      | >1000     | 25          | 25    | 10-25  | 10-25                             |  |

Efflux pump "blockers": CCCP (carbonyl cyanide m-chlorophenyl hydrazone), OVA (sodium orthovanadate)

Membrane permeabiliser: EDTA (ethylenediamine tetraacetic acid)



#### **RESPONSE TO BIOCIDE EXPOSURE**

Extracellular induction components (EICs)
 Acidification and heat response
 Rowburry. Adv Microbiol Physiol 2001; 44: 215-57

S. aureus pre-treatment with CHX – Low level resistance (3 fold increase) in unexposed cultures

Davies & Maillard. J Hosp Infect 2001; 49: 300-1

Quorum sensing (?)

Quorum sensing governing specific gene expression Catalase and superoxide dismutase gene expression Hassett *et al.* Mol Microbiol 1999; 34: 1082-93



| RESPONSE TO BIOCIDE EXPOSURE |                    |                                       |                             |  |  |
|------------------------------|--------------------|---------------------------------------|-----------------------------|--|--|
| Increasing tra               | ansferable resista | nce (?)                               |                             |  |  |
| Effect of biod               | ides on gene tran  | Sfer<br>Pearce et al. J               | Hosp Infect 1999; 43: 101-7 |  |  |
| Biocide                      | Concentration      | Increase/decrease in gene transfer by |                             |  |  |
|                              |                    | Conjugation                           | Transduction                |  |  |
| Povidone iodine              | 0.005%             | Increased 2 folds                     | NT*                         |  |  |
|                              | 0.01%              | NT                                    | Reduced 10 folds            |  |  |
| Chlorhexidine                | 0.00005%           | No effect                             | Reduced 10 folds            |  |  |
| Cetrimide                    | 0.0001%            | Reduced 2 folds                       | Increased 1000<br>folds     |  |  |
| Cetrimide                    | 0.0001%            | Reduced 2 folds                       | Increased 100<br>folds      |  |  |





#### **RESISTANCE MECHANISMS - Biofilms**

Establishing a concentration gradient Diffusion Interaction with cell constituents Lysed bacterial community (mechanistic inactivation/increased organic load) Enhanced bacterial insusceptibility Degradation Efflux (more effective against reduced concentration) Early stress-response Slow growth/metabolism Established a chemical gradient (reduced nutrients / O<sub>2</sub>)

# REDEFINING RESISTANCE- definitions • Intrinsic and acquired resistance? The best definitions? • Biofilm resistance • Environmental resistance • growth conditions; nutrient limitation • cell uptake; lower amount taken by cell grown in broth Brill et al. Int J Hyg Environ Health 2006; 209: 89-95 • metabolic status • cell envelope plasticity (exacerbated in biofilms)

#### **RESISTANCE MECHANISMS - Biofilms**

Selection for increased resistance Formation of packets of surviving bacteria

Dormant cells (might grow rapidly in the presence of exudate released from lysed community)

Acquisition of new resistant determinants Increased genetic exchange

#### Intrinsic resistance Type of bacteria

# High-concentration - emerging microbial resistance unlikely but NOT impossible

**RESISTANCE: A GENUINE CONCERN?** 

 microbial contamination of undiluted formulations (e.g. QACs)
 bacterial survival in glutaraldehyde (2% v/v), chlorine dioxide (2.25% v/v)

- Low-concentration
  - emerging microbial resistance?
  - interaction with the microbial cell?
  - eliciting stress response mechanisms?
  - selection of surviving clones?



# RESISTANCE: A GENUINE CONCERN? Difficult to produce resistant mutants in vitro well-documented (in vitro) studies on bacterial interaction with low-biocide concentration selection induction/expression of resistant phenotype stepwise training best method (unrealistic?)

#### The Next Few Teleclasses April 25 Making Infection Control Really Work ... with Prof. Seto Wing Hong, University of Hong Kong Environmental Surveillance for Infection Control April 26 . with Andrew Streifel, University of Minnesota May 8 Panton-Valentine Leucocidin Producing Staphylococcus aureus ... with Brenda Dale & Adam Brown, National Health Service, UK May 10 Infection Control in the Dialysis Clinic ... with Dr. Charmaine Lok. University of Toronto Ethics of Care During a Pandemic May 17 ... with Dr. Eric Wasylenko, Calgary Health Board For the full teleclass schedule - www.webbertraining.com For registration information www.webbertraining.com/howtoc8.php

**RESISTANCE: A GENUINE CONCERN?** 

- Cross- and co-resistance
  - evidence in vitro only
  - no evidence in practice
  - (not documented or reported)
  - no *in situ* evidence of microbicides selecting for antibiotic resistance at present (does not account for the increase usage of low concentrations of microbicides)
  - surveillance programmes (ongoing)

Making predictions is difficult,

Particularly about the future.

Sam Goldwyn