

Environmental Sampling in Healthcare

- Validation
 - Sanitation
 - Food preparation surfaces
 - Mechanical specification
 - Ventilation parameters
 - Contamination level
 - Air and water quality
 Fomites
 - Prevention of growth
 - Water damage control

Environmental Surveillance

What to monitor?

- Microbes
 - · Air and surfaces
 - Water
- Ventilation parameters
 - Air exchanges
 - Pressure
 - Filtration
- Construction and maintenance practice
- · Water response plan
- · Mold recognition and clean-up
- Construction management

Environmental Sampling

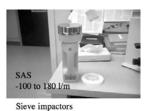
- Environmental microbiology is not clinical microbiology
- Sampling is supported by epidemiologic assessment
- Random, undirected sampling is not recommended
- Sampling requires a protocol for sampling and culturing, analysis of results, and action based on the interpretation of results

CDC Guideline for Environmental Infection Control, MMWR June 6, 2003

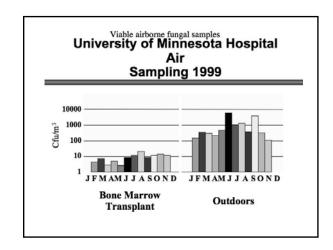
Air Sample Considerations

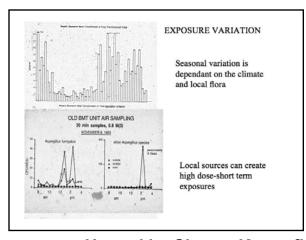
When to sample?

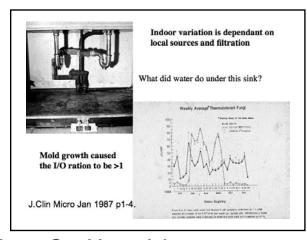
- Commissioning-before occupancy=baseline data
 - All parameters for ventilation assurance and cleanliness
 - Provide comparison data
- · Disease outbreak analysis
 - All environmental parameters with emphasis on source detection.
 - -Surface and air content for fungi
 - -Surface samples help find aerosol sources
- · Validation of ventilation
 - Pressure most meaningful?
 - Air exchanges needed for purging
 - Non viable particles can be used to assess filtration efficacy
 - Medical staff understand the viable counts the best

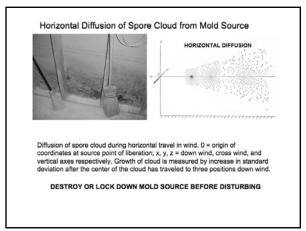

IC CDC ,	dethod	Principle	Suitable for measuring:	Collection media or surface	Rate of collection (L/min.)	Auxilliary equipment needed+	Points to consider	Prototyp samplers
	ngement in liquids	Air drawn through a wealil jet and directed against a liquid surface	Viable organisms, and concentration ever time. Example one: sampling water amounts to Legionella app.	Bullened golden, tryptone soline, peptone, tutrique bends	12.5	Yes	Antiforming agent may be needed. Anthiese temperature and burnishy will influence length of collection time.	Chemical Corps. All Class Impinger (AGE)
	action on d verfaces	Air drawn litts the somplex; perficies clayers ind on a dry surface	Viable particles, viable particles, viable or particles, (on non-national sources, limited to requirement that issued daying and sponey), side the analysis of the source	Dry variate, could variate, and rager	28 (sieve) 30-800 (sitt)	Yes	Available as since impactors or since impactors or six impactors or six impactors can be set up to inconser justice size. Six impactors for a totaling for agar place to fallow for finds assumed of concentration over time.	Anderson Al Samper (siewe impactor), TDL, Cassella MX 2 (siit impactors)
Sedi	mentation	Particles and micro- organisms settle oute surfaces via gravity	Viable particles. Example uses sampling air for become in the vicinity of and during a medical procedure, preced measurements of microbial sir quality.	Nutriest media (agent) on plates or slides	9	No	Simple and interpretation of interpretation of conflictive sampling, significant arrhame flunged spaces are too becomes to settle officiently six collection using this method.	Settle plates

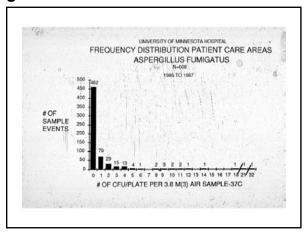
Optical particle counter



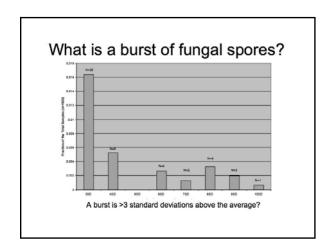


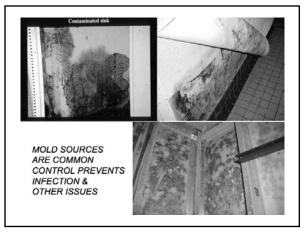

		TOTAL A	AIRBORN	E FUNG	1			
35 C	1997	1998	1999	2000	2001	2002	2003	2004
Bonemarrow	3	1.9	1	1.6	1.9	3.6	2.8	3.8
5-Med Surg	10.3	5.6	3	3.4	4.8	5.3	5.1	16
6-Transplant	4.2	1.6	5.3	2.8	5.9	6.9	6.4	4.4
7-Oncology	3.8	2.5	3.5	3.7	5.1	7.1	6.4	5.6
Reference	2.8	7.2	2.4	26.9	6.4	6.8	33	14
Outdoors	82.5	69.9	313.5	59.1	91.6	180	80	136
25C	1997	1998	1999	2000	2001	2002	2003	2004
Bonemarrow	24.5	14	9.2	9.8	6.1	6.9	16	11
5-Med Surg	4.8	46.3	17.9	22.6	16.5	12.3	20	22
6-Transplant	17	19.2	20.3	15.8	14.6	15.5	19	23
7-Oncology	18.7	11	13	59.5	16	20.5	37	13
Reference	22.4	30.2	15.7	25.2	16.3	21.6	32	48
Outdoors	408.3	1131.9	1216.8	728.8	315	673	914	1138
Aspergillosis								
tot cases		21	28	14	21	18	11	14

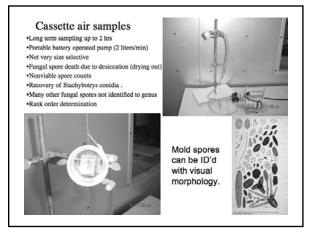

Interpretation of Data Rank order analysis

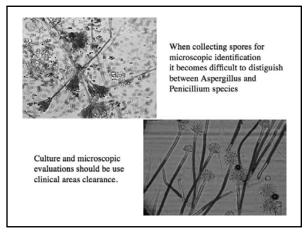

- Lowest counts in the areas with best filtration
- Comparison necessary with outdoor control
- Qualitative analysis
 - Pathogen recovery (Aspergillus)
 - Homogeneous population (versus heterogeneous isolates)
- - I/O <1 normal (seasonal considerations)
 - I/O >1 potential problem
- Temperature selectivity
 - Pathogens grow best at >35C (<1 cfu/m^3 pathogens)
 - Filtration efficacy determined at 25C (lowest counts = best filtration)

University of Illinois Medical Center 1998 to 1999 CFU per M^3 total fungi 25C Incubation

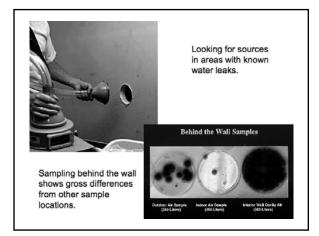

Location	N	average	range	Asp tot
Solid Organ Wards	62	44	2 - 248	12
Bone Marrow TX	62	40	0 - 220	8.4
Outside	122	257	10 - 1340	6.8

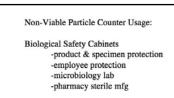

Cursis, et al JIH 2005


University of Minnesota Medical Center 1995 to 2005 CFU per M^3 total fungi 25C Incubation


Location	N	average	range	Asp tot
Solid Organ Wards	123	46	0 - 1120	Nd (10)
Bone Marrow TX	249	20	0 - 320	Nd (1.1)
Outside	129	848	16 - 5828	Nd (45)
Streifel unaublished	data 20	006		/ \- Ann @ 25

na 2008 ()=Asp @ 35C


Once on tape the tape is placed on slide with contrast dye for microscopic identification based on morphology Keys on filamentous fungi


FIELD IDENTIFICATION

Tease tapes with adhesive allows for spore forming component to be removed for identification

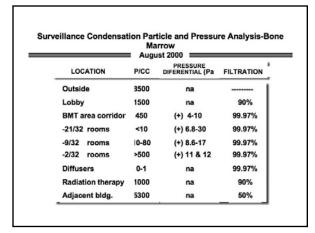
Optical particle counter

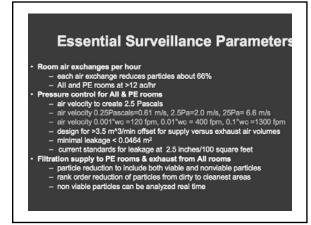
Healthcare application

-bone marrow transplant

-operating rooms

-pharmacy sterile compounding USP 797


-filter validation

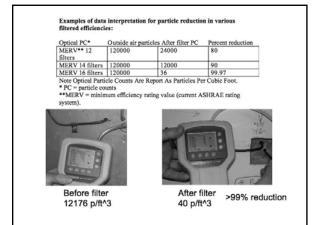

Particle counting and microbiological management

-Mil Spec 209E

-ISO Classification of Room Particulates

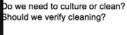
->0.5µm diameter

TESTING FOR FILTER INEFFICENCY?


"in situ" filter testing with condensation particle counter . Loose filters

Common causes of filter leaks are:

- Missing gaskets
 Missing or damaged filters
- · Incorrect filters installed
- · High air velocity
- · Overloaded filters


Validation of ventilation air from a BMT room -Low particle counts -High pressure

Validation of filters at the point of use -Particle count scan -Check filter installation

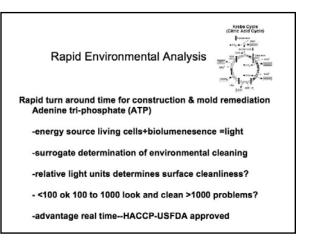
Does real time sampling Allow for quick response? Is it safe? Could the test be microbe specific or a measure of microbial reduction?

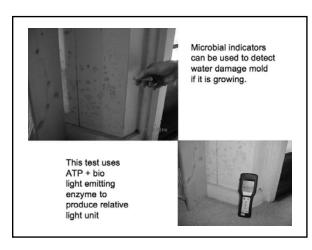
CDC Environmental Infection Control-MMWR 6/6/2003

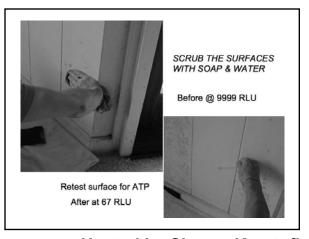
Box 15. Undertaking environmental-surface sampling

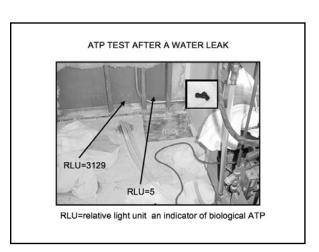
The following factors should be considered before engaging in environmental-surface sampling:

- Background information from the li epidemiologic investigation)
 Location of surfaces to be sampled und information from the literature and present activities (i.e., preliminary results from an
- The method of sample collection and the appropriate equipment for this task.
 The number of replicate samples needed and which control or comparison samples are required.
- The number of reprinces samples needed and watch control or compariss samples are required.
 The parameters of the sample savay method and whether the sampling will be qualitative, quantitative, or both
 An estimate of the maximum allow hile microbial numbers or types on the surface(s) sampled (refer to the Spanding candification for devices and surfaces)
 Some anticipation of a corrective action plan
- The material in this has a compiled from reference 1214.


Method	Suitable for appropriate surface(s)	Assay technique	Procedural notes	Points of interpretation	Available standards	References
Sampleirinse Mointmed swahl/stose	Non-absorbest nurfaces, corners, crevices, devices, and instruments	Dilutions; qualitative or quantitative assays	Assay multiple measures aleas or devices with separate south	Report results per measured areas or if amoving an object, per the entire sample site	YES - food industry; NO - heath care	1214, 1239- 1242
Mointmed spenge/time	Large areas and housekeeping surfaces (e.g., (faces or walls)	Dilutions; qualitative or quantitative assays	Vigorously rab a sterile spenge over the nurface	Raport results per measured area	YES - food industry; NO - beside care	1214, 1239- 1242
Moistured susperview	Large areas and housekeeping surfaces (e.g., countertops)	Dilutions; qualitative or quantitative assers	Use a sterile wipe	Report results per measured area	YES - food industry: NO - bealth care	1214, 1239- 1242
Direct immersion	Small items capable of being insterned	Othersons, qualitative or quantitative assays	Use membrane filtration if rinne volume is large and anticipated microbiological concentration is loss.	Report results per item	NO.	1214
Containment	Interior mellaces of containers, tobes, or bettles	Dilutions, qualitative or quantitative assays	Cor membrane filtration if rinse volume is large	Evaluate both the types and numbers of microorganisms	YES - fool and industrial applications for containers prior to fill	1214
SIODAC*	Physicondy clemed and samitord flat, non-abordent surface; tell suitable for irregular surfaces	Direct array	Overgrowth occurs if used on heavily contaminated surfaces, use necessaries in the ages of market desirected are desirected are residuals are resource.	Provides disect, quantitative results, use a minimum of 15 plates per an average hospital room	NO	1214, 1237, 1239, 1243, 1244




Rapid Environmental Analysis


Rapid turn around time for construction & mold remediation -PCR

- •spore equivalents per unit volume or surface area
- surface and air sample
- prior micro sample determines species identification
- · interpretation of data guidelines prior to sampling
- •example-air sample (-) surface (+) clean & move or air sample (+) surface (+) sanitize & resample

Flood occur especially if something is caught in the cleanout and along come a lot of water to cause a "burp".

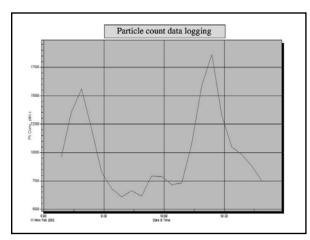
This grey water represents a potential infection control problem in an ICU. How do we know we have sanitized this bioload?

Aquarium provide high humidity environment which can promote mold growth.

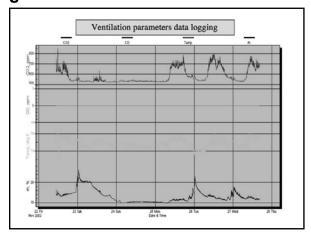
Accumulated dust in on the fan housing was full of Aspergillous fumigatus spores recovered with surface contact plates.

Fungal source management

- · Recognize fungal potential
 - Outward signs such as colonies on wall
 - Odors
- Water damage
- · Control methods
 - Containment
 - Clean-up
 - Verification



Pressure gauge & Particle count


REAL TIME MONITORING HAS AN ADVANTAGE OVER REQUIRED LAB ANALYSIS DUE TO CULTURE OR MICROSCOPIC METHODS.

Hosted by Sharon Krystofiak sharon@webbertraining.com www.webbertraining.com

Tool kit

·Air samplers-particle counters -optical versus condensation

·Pressure gauge

-sensitive to <.001'wg

Moisture monitor

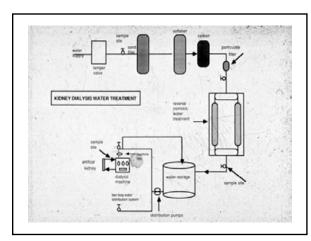
-contact versus probe -thermal differences

·Air samplers-microbial

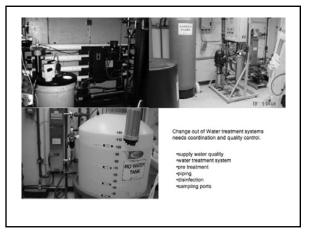
-high volume versus low volume

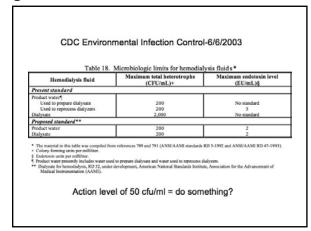
-viable versus non viable

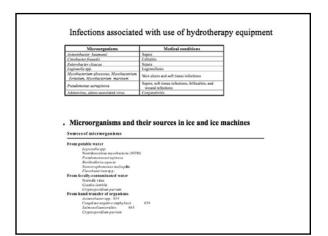
·Surface sampling

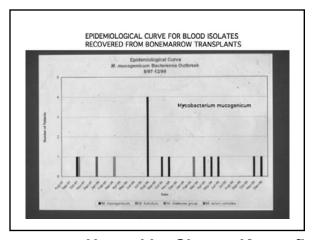

-swab versus contact plate

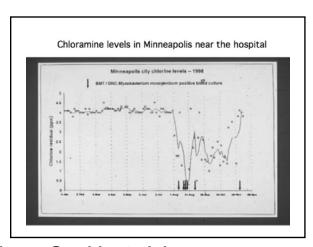
-viable vs ATP

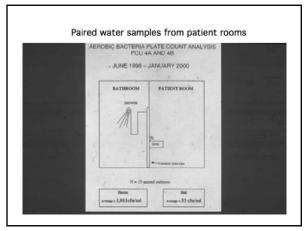

GUIDELINES FOR ENVIRONMENTAL INFECTION CONTROL CDC MMWR JUNE 6, 2003 Water Section

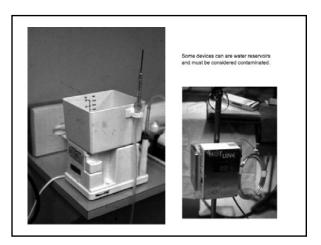

- · Waterborne microorganisms
- Facility water systems
- · Strategies for controlling Legionella spp.
- · Cooling towers
- · Hemodialysis and water quality
- · Ice machines
- Hydrotherapy
- · AERs and dental unit water lines (DUWLs)

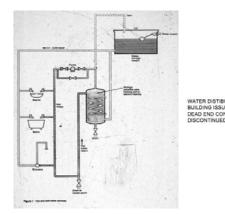

Reservoir	Ameriated pathogens	Transmission	Strength of evidence	Prevention and control
Perable water	Freedoments, gram- regative bacteria, NTM	Contact	Maderate	Fallow public health guidelines.
Reservoir	Ameriated pathegens	Transmission	Strength of evidences	Prevention and control
Persible water	Legionall a	Agroud inhalation	Minderone	Provide applicational magnitude for water.
Holy water	Crum-negative heavens	Contact	Lev	Annual contact with severe burn injuries. Minimizer use among immunicompromised pariette.
Dalysis water	Gram-negative bacteria	Contact	Moderate	(Nolysen should be <2,000 of sind.; water should be <200 of sind.
Automated andoscope reprocesses and rines water	Gram-orgative harteria	Come	Minderane	Use and maximum opagement according to instructions, eliminate residual moisture by drying the channels to g., through standed mine and throad air drying.
Water halfon	Paradiminan, Byrtholderia, Activitity of P	Contact	Moderate	Add germonde to the water, wrop transfusion products in protoctive plants wrop if using the hath to modulate the temperature of these products.
Tah inmenion	disambacan, dosembacan	Contact	Mideste	Onan and disinfer tal- ofter each use; consider adding genericide to the water, water in large hydroflattapy pools should be properly distinferated and filtered.
lor and ice machines	NIM, Extende ter, Produmente, Osphoporidism	Ingrarien, centers	Maderate	Clean periodically, use estimate dispersar (sevid spen cheat storage computination
Faced setation	Legionella Legionella	Assed ishalation	Molarulo	in patient area). Clean and distribut executing in high-risk patient areas, consider nemoving if additional inflations course
Faced surgices	Ametifactor, Stenorophonomo, Omostiactorium	Contact, dropfort	Lew	No productions are necessary of product in introducerophoris patient care areas.
Sinks	Producture	Conset, dreplet	Minderate	Chr appare unks for handwarking and disposal of contaminated fluids.


Hosted by Sharon Krystofiak sharon@webbertraining.com www.webbertraining.com






Non-Tuberculous Mycobacteria: Infections or Colonization Implicated Environmental Mycobacterium spp. Vehicle Inadequately sterilized medical M. abscessus, M. chelonae, M. instruments Potable water, ice M avium complex (MAC), M. fortuitum, M. ulcerans M. chelonae, M. fortuitum, M. Hydrotherapy tanks and pools marinum Reprocessed dialyzers M. chelonae Shower aerosols M. fortuitum



Healthcare-associated Outbreaks of Legionellosis

- · Contaminated aerosols
- · Exposure to aerosols produced from:
 - Cooling towers
 - Showers, aerators
 - Faucets
 - Respiratory therapy equipment
 - Room-air humidifiers
 - Decorative fountains

WATER DISTIBUTION SYSTEM BUILDING ISSUES RELATED TO DEAD END CONNECTIONS FROM DISCONTINUED LINES.

Legionella Control with Chlorination

- In 1990 23% of municipalities with >50,000 people used mono chloramine disinfection
- Advantages:
 - does not form trihalomethanes
 - heat stable
 - more effective at penetrating bio film

Hospitals with outbreaks of Legionellosis predominately >200 beds •73% of those hospitals have a transplant program

- •31 outbreaks in hospitals with free available chlorine
- only one outbreak with mono chloramine
- Chlorine dioxide

local production for legionella management (PCU area or whole hospital?) long term disinfection Royal Infirmary Glasgow Scotland (10 years)

Monochloramine in Municipal Water Systems

Number of Municipal water buildings tested=53

- -37 of 53 (70%) buildings colonized before chloramine
- 5 of 53 (9%) buildings colonized after chloramine

or

246 culture positive of 624 samples before chloramine

9 culture positive of 622 samples after chloramine

Wide spread use of chloramines may reduce Legionellosis transmission and disease in the United States

Reducing Legionella Colonization of Water Systems with Monochloramine, B. Flannery, et.al, Emerging Infectious Diseases, www.cdc.gov/eid * Vol. 12, No. 4, April 2006

Cooling Tower Concerns

- Cooling towers provide ideal environments for Legionella spp. growth
- Locate cooling towers to minimize intake of drift aerosols into the ventilation system
- Perform maintenance cleaning and treatment as per manufacturer's instructions and other available guidance
- Clean and treat before seasonal start-up

Cooling Tower considerations:
-location of air intake
-drift eliminators
-design to facilitate cleaning
& disinfection
-continuous treatment for
control of biomass
-tower and pipe resistant to
disinfection
-start up best time for dispersal
-routine maintenance
-testing & record keeping

Verification of Ventilation USP 797 Environmental Assessment

- · Clean, Cleaner and Cleanest
 - ISO standards
- Cleanest
 - Biosafety cabinet
 - Chemo therapy or antibiotic preparation
 - Clean bench-LAF
 - IV preparation
- · Cleaner inventory dispensing area
- · Clean general public circulation area

Comparison analysis

- Particle counter
 - Outside vs other areas
 - Lowest levels in the cleanest locations
- Pressure management
 - Airflow from cleanest to cleaner to clean
 - Pressurized environment
- · Filtration and Air exchanges
 - Dilution ventilation

Cleanliness Verification

PRESSURE MEASUREMENT & PARTICLE ANALYSIS

- ·Hands
 - -Demonstrate compliance of hand washing
- Air quality
 - -Demonstrate comparison data
- Surfaces
 - -Demonstrate cleaning
- Training
 - -Demonstrate understanding and competency

May 8	Panton-Valentine Leucocidin Producing Staphylococcus aureus
	with Brenda Dale & Adam Brown, National Health Service, UK
May 10	Infection Control in the Dialysis Clinic
	with Dr. Charmaine Lok, University of Toronto
May 17	Ethics of Care During a Pandemic
	with Dr. Eric Wasylenko, Calgary Health Board
May 24	Importance of Vaccination Among Dialysis Patients
	with Dr. Matthew Arduino, CDC
May 31	Evaluation and Management of Infectious Disease
	Outbreaks in Nursing Homes with Dr. Chesley Richards, CDC
	with br. Offestey Nichards, Obo