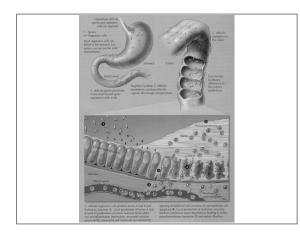
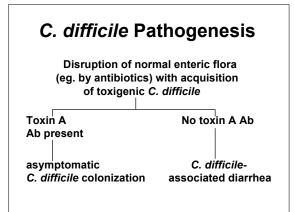


Objectives

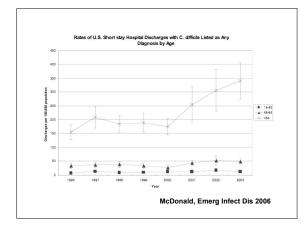
- to understand the changing epidemiology and outcome of *C. difficile*-associated diarrhea
- to appreciate the unique features of *C. difficile* in long-term care facilities
- to identify evidence-based strategies for the management and prevention of *C. difficile* infection

Clostridium difficile


- implicated in 20%-30% of antibiotic-associated diarrhea
- major cause of nosocomial infectious diarrhea
- fecal-oral transmission via hands of HCWs and contact with contaminated environment


McFarland, NEJM 1989; Bartlett, Clin Infect Dis 1992


Associate	d Diarrhea
Clinical Feature	Frequency (%)
Watery diarrhea	>90
Bloody diarrhea	<10
Abdominal pain	60-90
Peritoneal signs	10-20
Fever	70-80



*C. difficile-*Associated Diarrhea

- >80% onset during antibiotic therapy
- may occur with single dose of antibiotic
- may occur after antibiotics discontinued (up to 6 wks later)

C. difficile in the Elderly

- increasing age is a risk factor for acquiring *C. difficile* and for CDAD (McFarland, J Infect Dis 1990; Brown, ICHE 1990)
- most patients > 60 yrs of age (Aronsson, J Infect Dis 1985; Wilcox, J Antimicrob Chemother 1998)
- 5-10 fold higher rates of CDAD in older adults; 228/100,000 pop'n. in US in those >65 yrs (McDonald, Emerg Infect Dis 2006; Pépin, Can Med Assoc J 2004)

C. difficile in LTCFs

- C. difficile prevalence in LTCFs up to 15% (Simor, Clin Infect Dis 1993; Walker, J Am Geriatr Soc 1993)
- incidence of C. difficile acquisition in LTCFs: 0.2-2.6/1,000 resident-days (Simor, Clin Infect Dis 1993; Laffan, J Am Geriatr Soc 2006)
- in state-wide surveillance (Ohio), approx 50% of CDAD acquired in a LTCF; rate: 2-3/10,000 resident-days (Ohio Dept. of Health; www.odh.state.oh.us/)

Risk Factors for *C. difficile* in LTCFs

Risk factor	O.R. (p value)
Antibiotics (prior 4 wks)	3.3 (0.03)
Cephalosporin use	4.7 (0.04)
Presence of >3 comorbidities	2.0 (0.03)
Presence of feeding tube	6.5 (0.006)
Fecal incontinence	2.5 (0.03)

Simor, Clin Infect Dis 1993; Walker, JAGS 1993

- impaired *C. difficile* phagocytosis and toxin neutralizing Ab (Bassaris, Med Microbiol Immunol 1984; Viscidi, J Infect Dis 1983)
- presence of underlying diseases, use of H2-antagonists, PPIs (Simor, Clin Infect Dis 1993; Walker, J Am Geriatr Soc 1993)
- residence in a closed environment, with limited infection control and housekeeping resources

Why are the elderly at risk?

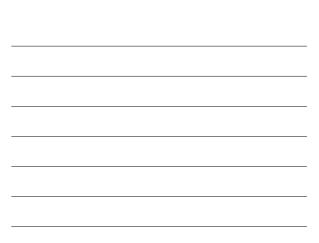
- colonization pressure (Dubberke, Arch Intern Med 2007)
- antimicrobial utilization: 8-33% of LTCF residents treated with an antibiotic acquire C. difficile (Thomas, J Am Geriatr Soc 1990; Simor, Clin Infect Dis 1993)

Clostridium difficile Changing Epidemiology

- increasing incidence and severity in US, Canada, UK, and Europe
- rates doubled in US hospitals 1996-2003: 3.1 to 6.1/100,000 pop'n (p=0.01)
- associated with a hypervirulent epidemic strain (NAP1; PCR ribotype O27; toxinotype III)

McDonald, NEJM 2005; Loo NEJM 2005; Warny, Lancet 2005; McDonald, Emerg Infect Dis 2006

C. difficile – Increasing Burden of Disease in U.S. Hospitals


Year	Rate per 1,000 admissions
2001	4.3
2004-2005	6.9
2005-2006	7.3
	McDonald, IDSA 2007

C. difficile-Associated Diarrhea Increasing Incidence/Severity

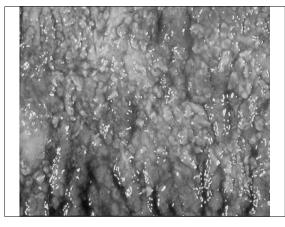
- Centre Hospitalier Universitaire de Sherbrooke: 2.1/1,000 admissions in 2002 10/1,000 admissions in 2003 18/1,000 admissions early 2004 (Valiquette, CMAJ 2004)
- Sherbrooke rates increased: 35.6/100,000 pop'n in 1991 156/100,000 pop'n in 2003 866/100,000 pop'n in those ≥65 yrs (Pépin, CMAJ 2004)

Nosocomial <i>C. difficile</i> in Canadian Hospitals					
Region	Rate				
	per 1,000 admissions per 10,000 patient-days				
East	3.4 5.2				
Central	5.6 8.1				
West	4.5 7.3				
Overall	4.7	7.3			
	Canadian Nosocomial Infection Surveillance Program, 2007				

Why is there a problem with *C. difficile* now?

more virulent strain

- clonal outbreak
- less susceptible strain
- toxin genes; other virulence factors
- · changes in how antibiotics are used
- changes in infection control practices or environmental cleaning

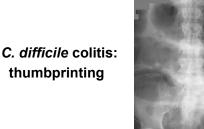

Epidemic C. difficile • Quebec strain: NAP1/027, toxinotype III N. Amer. PFGE type 1 • 67% of healthcare facility isolates 37% of community isolates Warny, Lancet 2005

Epidemic C. difficile

- binary toxin (significance uncertain, as binary toxin does not cause disease in animal models)
- deletions in *tcdC* gene (associated with higher levels of toxins A and B) (Warny, Lancet 2005)
- high-level fluoroquinolone and clindamycin resistance

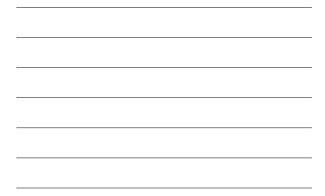
C. difficile Complications

- acute abdomen, peritonitis
- toxic megacolon
- colonic perforation
- dehydration, hypokalemia, GI bleeding


 161 cases/656 controls matched by 		
age, sex, C	harlson Com	orbidity
Index; She	rbrooke Que.	., 2003-04
	Mortality (%)	
	30-day	12-month
Cases	23	37
Controls	7	21
٨	ttributabla n	nortality: 16%

C. difficile Impact

- attributable mortality, as high as 16% (Pépin, CMAJ 2005)
- 3 to 11 excess days of hospital stay; \$3,700 to \$13,675 incremental costs (Kyne, Clin Infect Dis 2002; O'Brien, ICHE 2007)


C. difficile Diagnosis

- CDAD should be suspected in any hospitalized/LTCF patient with diarrhea who has received antibiotics in the previous 2 months
- fever is typically present
- leukocytosis (WBC >20,000) is associated with more severe disease

C. difficile Diagnosis

Test	Sensitivity (%)	Specificity (%)
Culture	89-100	84-99
Cytotoxin assay in cell culture	67-100	85-100
EIA toxin assay	63-99	75-100


C. difficile Diagnosis

- only diarrheal (unformed) stools should be tested, unless ileus is suspected
- no value to testing stools of patients without symptoms (including "test of cure"), unless investigating an outbreak

C. difficile Treatment

- stop antibiotic, if possible
- avoid anti-peristaltic agents (may precipitate toxic megacolon)
- treat only symptomatic patients

Re		<i>fficil</i> e o treatmen	t
Disease severity	<u>No. cured/N</u> Mtz	<u>lo. treated(%)</u> Vanco	p value
Mild	37/41 (90)	39/40 (98)	0.36
Severe	29/38 (76)	30/31 (97)	0.02
	<u>Relaps</u>	<u>e rate (%)</u>	
	9/66 (14)	5/69 (7)	0.27
		Zar, Clin Infec	t Dis 2007

C. difficile

Treatment

Typical response to treatment with Vanco/Flagyl is 3-5 days, and up to 10 days for complete resolution of symptoms

C. difficile Relapse

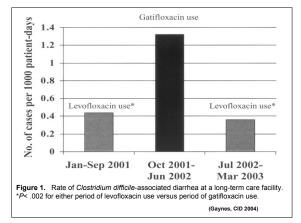
- relapse occurs in 5-30% of patients (persistence of spores or re-infection)
- most respond to repeat of initial therapy; 92% will have no further recurrence (Olson, 1994)

C. difficile Relapsing Disease

- Saccharomyces boulardii
- Lactobacillus GG
- Vancomycin + rifampin

C. difficile - New Agents

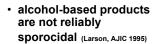
- tolevamer (resin that binds toxins)
- macrocyclic antibiotics: ramoplanin OPT-80 (tiacumicin)
- nitazoxamide
- IVIG
- ingestion of non-toxigenic *C. difficile*; donor stool replacement (enema/NG tube)


Is the most important factor affecting the emergence and spread of *C. difficile*:

antibiotic utilization?

infection control practices?

Antimicrobial Utilization and *C. difficile*


- decreasing use of broad-spectrum cephalosporins associated with decreased CDAD
- (McNulty, JAC 1997; Khan, J Hosp Infect 2003; Thomas, CID 2005) • reduced use of clindamycin
- associated with decreased CDAD (Brown, ICHE 1990; Pear, Ann Int Med 1994; Climo, Ann Int Med 1998) • change in fluoroquinolones associated
- with change in CDAD rates (Gaynes, CID 2004)

Hand Hygiene

 4% chlorhexidine gluconate equivalent to soap/water for removing *C. difficile* from hands (Bettin, ICHE 1994)

Intervention Effectiver	
Barriers	
Handwashing	probable
Gloves	proven (Johnson, AJM 1990)
Gown	no data
Cohorting	probable
	Gerding, ICHE 1995

Intervention	Effectiveness	
<u>Environment</u>		
Disinfection of room (hypochlorite)	proven (Mayfield, CID 2000)	
Use of disposable thermometers	proven (Brooks, ICHE 1992)	
Endoscope disinfection	probable	

-			

Environmental Cleaning

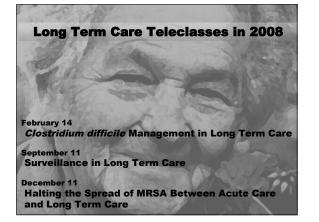
- hypochlorite solutions effective in reducing bacterial load and sporulation
- quaternary ammonium compounds, hydrogen peroxide, and other nonchlorine-containing agents less effective for inactivating spores

Kaatz, Am J Epidemiol 1988; Mayfield, Clin Infect Dis 2000; Fawley, Infect Control Hosp Epidemiol 2007

Clostridium difficile

Intervention	Effectiveness
Antibiotic use restriction	proven (Pears, Ann Int Med 1994)
Use of probiotics	ineffective
Gut "decontamination" to eradicate <i>C. difficile</i>	ineffective

Recommendation	Strength and Quality of Evidence
CDAD surveillance	BIII
Antimicrobial use surveillance	BIII
Prudent use of antibiotics	All
Hand hygiene (soap or alcohol gel)	BIII
	SHEA Position Paper, Infect Control Hosp Epidemiol 2002


C. difficile in LTCFs				
Recommendation	Strength/Quality of Evidence			
Isolation, private room, commode (if feasible)	BIII			
Glove use	AI			
Use of disposable thermometers	All			
Dedicated patient care items, equipment (if feasible)	BIII			
Environmental cleaning, disinfection with a sporocidal agent (diluted hypochlorite solution)	BII			
	SHEA Position Paper, ct Control Hosp Epidemiol 2002			

References

Gerding, Infect Control Hosp Epidemiol 1995; 16:459-77

Simor, Infect Control Hosp Epidemiol 2002; 23:696-703

