Basics of Outbreak Management

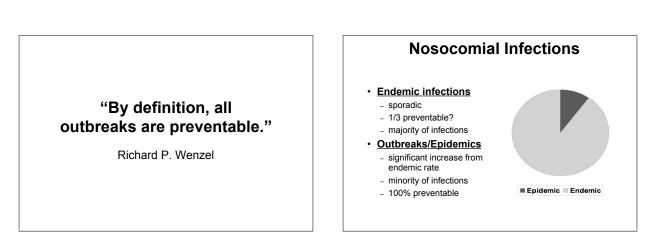
William R. Jarvis, M.D., FAAP, FIDSA, FSHEA Jason and Jarvis Associates www.jasonandjarvis.com

> Hosted by Paul Webber paul@webbertraining.com

www.webbertraining.com

Purpose

- 1. Review the approach to investigating outbreaks in healthcare facilities.
- 2. Illustrate the value of combined epidemiologic and laboratory investigations.
- Illustrate how <u>YOU</u> can impact on patient outcomes (locally and nationally) through outbreak investigations.



- Increase in incidence beyond the expected in a defined geographic area, within a defined period of time.
- A significant increase (p <0.05) in the rate of adverse events above that noted in the past.

Nosocomial Infections and Outbreaks

- Each year 2 million patients acquire a healthcareassociated infection*
- Outbreaks:
 - Among hospitals in the National Nosocomial Infections Surveillance (NNIS) System, 5% of healthcare-associated infections occur in epidemics/outbreaks**
 - Most are small clusters; many are unrecognized
 - Outbreaks can lead to morbidity, mortality, consume time, effort and resources

*Jarvis, Outbreak investigations in the healthcare setting. Seminars in infection control, 2001, 17-34, ** Deabbelling, Epidemics Identification and management. In: Worzel ed. Prevention and Control of Neoscomial Infections. Baltimore MD: Williams & Wilkins; 1992: 177:206

Implicit Assumptions

- · Case definition has not changed.
- Methods for diagnosing the disease or identifying the organism have not changed.
- Case finding methods have not changed.

Pseudoepidemic

- Real clusters of false infections
- · False clusters of real infections

Pseudoepidemics

- 20 (11%) of 181 nosocomial epidemics investigated by the CDC between 1956 and 1975 were pseudoepidemics.
- 55% resulted from errors of collecting, handling, or processing specimens.
- 30% resulted from surveillance artifacts.
- 15% resulted from errors of clinical diagnosis.

Weinstein and Stamm Lancet 10/22/77

Goals of an Outbreak Investigation

- · Identify the etiologic agents
- Identify the reservoir(s)
- Identify the mode of transmission
- · Eliminate the reservoir(s) and transmission
- Prevent future outbreaks

Two Approaches to Outbreak Investigation

- · Quick and dirty
- · Detailed epidemiologic and laboratory investigation

The Quick and Dirty Outbreak Investigation

- Quickest
- Least expensive
- Approach
 - Case definition
 case-ascertainment
 - case-as
 line list
 - Ine list
 - Identify common exposures
 Introduce control measures.
- Hosted by Paul Webber paul@webbertraining.com www.webbertraining.com

The Detailed Outbreak Investigation

- · Personnel and resource intensive
- · Combines epidemiology and laboratory investigations.
- Least expensive
- Approach
 - Case definition Case-ascertainment
 - Line-list

 - Epidemic curve
 Comparative study (case-control, cohort, personnel, etc.) - Laboratory studies (e.g., inanimate/animate cultures, isolate comparison)
 - Observational studies
 - Introduction of control measures
 - Post-outbreak surveillance to document termination of the outbreak

Microbiology Laboratory

- · Important source for case finding if you know the etiologic agent
- · Identify the organisms as completely as possible - Genus and species
 - Epidemiologic typing
- · Save all isolates!!!

Case Definition

- · A description of the cases that changes as new data are accumulated, include time, place and person.
- · Example (who, what, when and where):
- SSI outbreak. Pus at the operative site in a patient in the SICU at Hospital A from May 1-10, 2005 with wound or blood cultures positive for MRSA that has a particular PFGE pattern.

Literature Review

- · What is the usual reservoir?
- · What is the usual mode of transmission?
- · Has it been reported to cause outbreaks?
- · What factors were important in those outbreaks? (IV lines, contaminated products or food items, respiratory therapy, breaks in sterile technique, etc.)?

Define the Extent of the Problem

- · Surveillance system
- Microbiology laboratory
- · Employee health
- · Other healthcare facilities
- · City, county, state, federal health agencies
- · Reference laboratories

Attack Rate

- · Number of patients affected divided by number of patients at risk
- · Number of infections divided by number of patients at risk
- · Number of adverse outcomes divided by number of patients at risk

Epidemic Period

• The time from the onset of the first case to the cases currently under investigation

Pre-Epidemic Period

- Arbitrarily defined period of time that is long enough to provide sufficient cases of a low frequency event
- Usually at least 6 months of surveillance data should be examined
- · 12 months will avoid seasonal bias

Epidemic Curve

- Graphic display of outbreak with time (minutes, hours, days, weeks, months, years) on the X-axis and the number of persons meeting the case definition on the Y-axis.
- Both pre-epidemic and epidemic periods should be plotted.

Search for Risk Factors: The Line Listing

- Admission date
- Infection data
- Demographic data
- Underlying diseases
- Pre-infection exposures to
- service
- Ward, unit, bed or room e.g., operating)
- Diagnostic testsTherapeutic interventions
- Personnel

Form a Hypothesis

- Using data from the epidemic curve, line-listing, literature, etc. form a hypothesis regarding:
 the reservoir
 - the reservoir
 the mode of spread

Test the Hypothesis Using a Comparative Study

- · Case-control study
- Cohort study
- What factors determine the choice?
 - Number of cases
 - Duration of the outbreak
 - Rarity of the adverse event
 - How much time you have

Test the Hypothesis Using a Case-Control Study

- · Cases are compared to controls.
- The proportion in each group exposed to various risk factors are compared.
- Were case-patients exposed to a risk factor that controls were not exposed to?
- Is the association statistically strong (Chi-square or Fisher's exact test p < 0.05)?

Selecting Controls

- Choose patients from appropriate subpopulation
- 2 to 4 controls per case, if fewer than 10 cases
- Initially don't match
 - Stringent matching obscures risk factor
 - Can't analyze matched variables

Clues Important in Investigating an Outbreak

- Multiple organisms causing infection at a single site or associated with invasive procedures may suggest problems with aseptic technique
- A single organisms, particularly clonal, suggests a common source.
- The epidemic curve may suggest the mode of transmission
- An unusual organism may be a clue to a problem (Enterobacter cloacae, Enterobacter aggiomerans, Salmonella muenchen)

Epidemiologic Typing

- · Epidemiologically related isolates:
 - Are derived from a single clone
 - Share characteristics that differ from those of epidemiologically unrelated isolates
- Are isolates from > 2 patients or from patients & environment the same or different?
- · Doesn't replace epidemiological analyses!!!

Evaluating Typing Systems

Typeability:

Ability to obtain an unambiguous positive result for each isolate analyzed

- Reproducibility: Ability to give the same result each time a strain is tested
- Discriminatory power: Ability to differentiate among unrelated strains

Hierarchical Approach to Typing

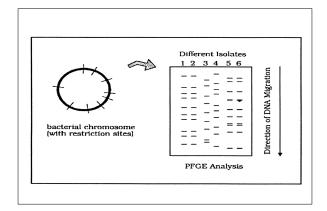
- · Start with simple, inexpensive, readily available tests
- Do more expensive, more difficult, less readily available tests only if the clinical, epidemiologic, and microbiologic data indicate that they are necessary

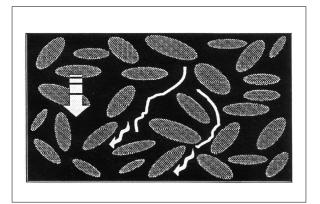
Phenotypic Techniques

- Colony morphology
- Biotyping
- Serotyping
- Phage typing
- Immunoblotting
- · Antimicrobial susceptibility
- Multilocus enzyme electrophoresis

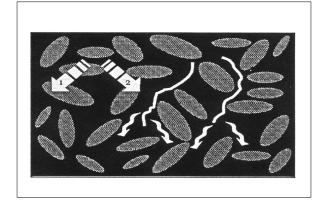
Characteristics of Phenotypic Typing Systems

Tumin a Custom	Proportion of	Reproducibility	Discriminatory Power
Typing System	Strains Typeable	Reproducibility	Power
Biotyping	All	Poor	Poor
Antibiogram	All	Good	Poor
Serotyping	Most	Good	Variable
Phage typing	Most	Fair	Variable
Immunoblotting	All	Good	Good
MLEE	All	Excellent	Good


Molecular Techniques

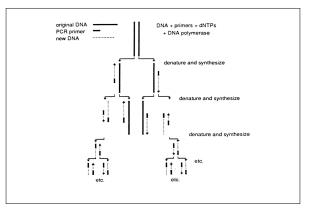

- · Cellular fatty acids
- Pyrolysis mass spectrometry
- · Whole cell polypeptide analysis
- Plasmid pattern analysis (PPA)
- Ribotyping
- Pulsed Field Gel Electrophoresis (PFGE)
- Polymerase chain reaction (PCR)

Characteristics of Genotypic Typing Systems


Typing System	Proportion of Strains Typeable	Reproducibility	Discriminatory Power	
PPA	Most	Fair	Variable	
REA	All	Variable	Variable	
Ribotyping	All	Excellent	Good	
PFGE	All	Excellent	Excellent	
PCR	All	Excellent	Unknown	

Maslow & Mulligan ICHE 17:595-604;1996

Hosted by Paul Webber paul@webbertraining.com www.webbertraining.com



PFGE: Advantages

- · Less hands-on-time
- All organisms should be typeable
- · Less nonspecific shearing of DNA
- Fewer bands per pattern/easier to read
- Does not require probes; can be extended to include probes
- · May be more discriminatory than ribotyping

PFGE: Disadvantages

- High start-up costs
- · Method/interpretation not standardized
- May need two gels to visualize upper and lower MW ranges
- · Takes longer than PCR

Polymerase Chain Reaction

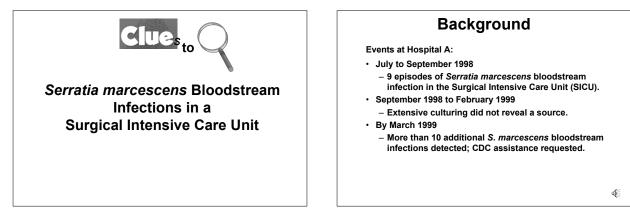
- Arbitrarily primed PCR (AP-PCR)
- Randomly amplified polymorphic DNA (RAPD)
- Specific sequence polymorphisms
- · Polymerase chain reaction ribotyping

PCR: Advantages

- Rapid
- · Relatively inexpensive
- Universally applicable
- Types organisms that:
 - grow slowly or not at all in vitro
 - are nonviable
 - are in tissues
 - are hazardous to grow

PCR: Advantages

- · Can use sheared/single-stranded DNA
- Can use nanogram amounts of DNA
- · Good discrimination for some organisms
- Can use endonucleases to increase discrimination
- · Equipment/method can be used for diagnostic tests


PCR: Disadvantages

- · Amplifies any contaminating DNA
- Sensitive to conditions--Mg, temp
- Method/interpretation not standardized
- May be difficult to identify good primers
- Each primer requires a separate gel
- Limited data

Compari	SON OF	ryping	wethou	12
	PPA	PFGE	PCR	
Supplies \$/run	8	17	8	
Hands on time (min)	120	125	90	
Overall time (days)	1.5	5	1	
Equip. costs (\$)	2,000- 4,000	15,000- 20,000	10,000	

One Hospitals Approach

- · The microbiology lab:
 - saves all isolates from normally sterile body sites and all nosocomial infections
 - processes surveillance cultures and cultures of the environment as necessary
 - does ribotyping (via RiboPrinter) and/or PFGE to determine whether isolates are the same

Background

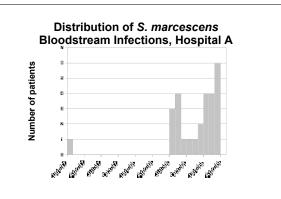
- 455 bed tertiary care facility

Hospital A

- Level 1 trauma center
- Several Intensive Care Units (ICU)- geographically
- separated – Surgical Intensive Care Unit (SICU)
 - Three stations
 - 150-200 admits per month
 - Most common admission-post cardiac bypass
 - 12% admits trauma

Background

- S. marcescens, gram-negative bacilli
 - Found in water and the environment.
 - It is not a part of the normal human flora.
 - Rare, but serious cause of infection*
 - Urinary tract
 - Wound
 - Bloodstream
 - · Hospital outbreaks from diverse sources.


* Yu VL. Serratia marcescens-Historical perspective and clinical review. New Eng J Med 1979;300:887-893

S. marcescens Outbreaks				
Source	Reference			
Pressure transducers	Donowitz, JAMA, 1979 Villarino, JCM, 1989			
Flexible bronchoscopy	Web, Chest, 1975			
Heparized saline solution	Cleary, Am J Pract Infect Control, 1981			
Cleaning solutions, soaps	Ehrehkranz, Lancet, 1980 Archibald, ICHE, 1997			
Employees hands/nails	Passaro, JID, 1997			
Reduced nurse:patient ratio	Archibald, Ped Infect Dis, 1997			

Review of clinical microbiology data for Serratia spp. blood culture isolates at Hospital A:							
Location:							
SICU	Hospital-Non SICU	p-value					
(Isolates/1	000 patient days)*						
6.17	0.056	<0.001					
In SICU o	In SICU over time:						
7/98-3/99	7/97-6/98	p-value					
(Isolates/10	(Isolates/1000 central line days)*						
8.07	0.13	<0.001					
* Emori G, et. al., National Nosocomial Infections Surveillance (NNIS) System: Description of surveillance methods, American Journal of Infection Control, 1991,19: 19-35.							

Comparisons

Case-Patient Characteristics (n=26)				
Male, n (%)	17 (65)			
Age, years mean (range)	48 (17-87)			
SICU stay, days median (range)	14 (3-40)			
Mortality, n (%)	3 (12)			

Case-Infection Characteristics n=26 (%)				
Polymicrobial – with Enterobacter sp.	8 (31) 7 (27)			
Persistent bacteremia	13 (50)			
On antibiotics at time of culture	18 (69)			

Control/Containment

- Assessment for patient colonization
 - Evaluation of all SICU patients on the one day 3/17/99
 Tracheal or urine sample within 7 days*
 - Of 24 patients samples, only 1 patient with tracheal Serratia colonization
- Review of microbiological data for clinical isolates of Serratia spp. at other anatomical sites-rare

* Yu VL. Serratia marcescens-Historical perspective and clinical review. New Eng J Med 1979;300:887-893

Control/Containment

- Assessment for environmental contamination
 - Cases in all 3 nursing stations, in >10 patient rooms
 - Multiple cultures (>50 done by infection control staff 9/98 to 3/99)- no Serratia spp.

Case Control Study Definitions

- Epidemic period: June 30, 1998-March 18, 1999
- Case-patients: SICU patients with an S. marcescens
 bloodstream infection
- Control-patients: Randomly selected SICU patients with a ≥48 hour stay during epidemic period and with no gram-negative organism bloodstream infection

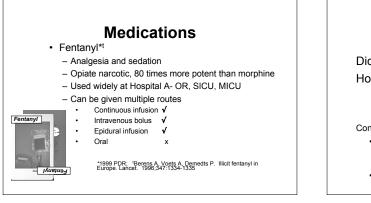
Summary of Factors Evaluated*

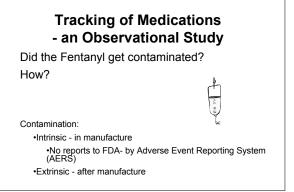
· Respiratory care

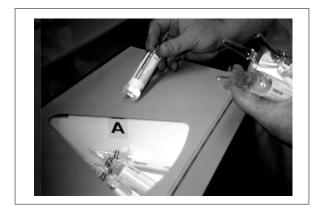
Mortality**

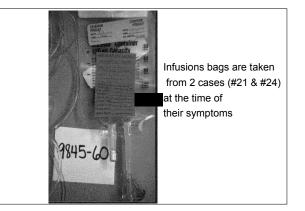
APACHE II on admit

Non-significant


- Gender
- Age
- Surgical procedure
- Intubation/mechanical ventilation


*9 Page guestionnaire


**Increased for cases if definite and possible cases included


Risk Factors for <i>S. marcescens</i> Bloodstream Infection					
Cases n=26 (%)	Controls n=65 (%)	Odds Ratio	p-value		
16 (62)	14 (22)	6	< 0.001		
26 (100)	52 (80)	Undefined	0.02		
11 (42)	4 (6)	11	< 0.001		
	Cases n=26 (%) 16 (62) 26 (100)	Bloodstream Infe Cases n=26 (%) Controls n=65 (%) 16 (62) 14 (22) 26 (100) 52 (80)	Cases n=26 (%) Controls n=65 (%) Odds Ratio 16 (62) 14 (22) 6 26 (100) 52 (80) Undefined		

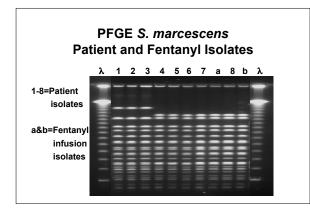
Evaluation of Fentanyl Exposures					
Fentanyl Exposure	Cases n=26 (%)	Controls n=65 (%)	Odds Ratio	p-values	
Fentanyl in SICU	25 (96)	29 (45)	31	<0.0001	
Continuous infusion in SICU	25 (96)	24 (37)	42	<0.0001	
Days of fentanyl, median (range)	5 (1-27)	2 (1-7)		<0.0001	
Total amount (cc) NB: 17 cases had Fe	28,000 ntanyl infusions a	6,100 at time symptoms		<0.0001	

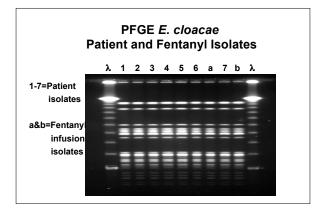
Hosted by Paul Webber paul@webbertraining.com www.webbertraining.com

Laboratory Cultures

Fentanyl related:

Ampules outside SICU Ampules inside SICU Equipment, infusion bags Infusions negative negative negative positive*

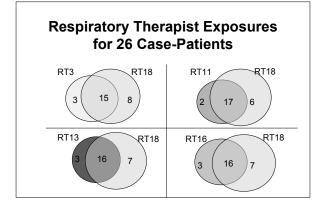

Lab


* Cultures positive for **S. marcescens, E. cloacae** from infusions from 2 cases

Laboratory Results

- S. marcescens isolates from 24/25 case-patients related by pulsed-field gel electrophoresis (PFGE)*
- All 7 Enterobacter isolates were indistinguishable by PFGE
- · Confirmed fentanyl infusion growth

*Exception: 1 cases where *S. marcescens* was not related, did not get fentanyl infusion



Personnel Study

- Patient care provided by many healthcare workers
- Reviewed medical records for exposure to healthcare workers
 - ~ 100 SICU nurses
 - ~ 80 physicians
 - ~ 50 respiratory therapists (RTs)

Respiratory Therapist (RT) Exposures					
Therapist	Cases n=26 (%)	Controls n=65 (%)	Odds Ratio	p-value	
RT3	18 (69)	20 (31)	5.1	0.001	
RT11	19 (73)	25 (39)	4.3	0.004	
RT13	19 (73)	21 (32)	2.8	0.04	
RT16	19 (73)	32 (49)	5.7	<0.001	
RT18	23 (88)	24 (37)	13.1	<0.0001	

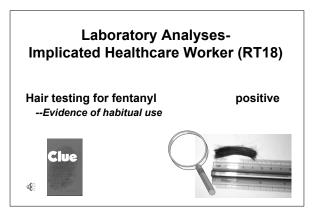
Implicated Healthcare Worker

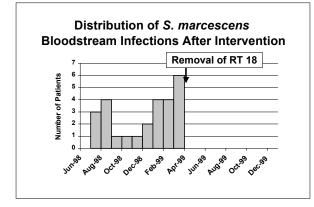
RT18

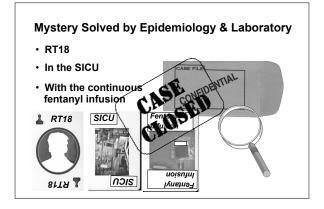
- SICU supervisor
- Associated with most case-patients (23/26)

Clue

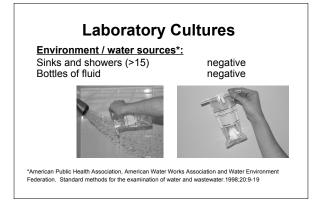
 Witnessed tampering with fentanyl infusions of a case-patient (#21)

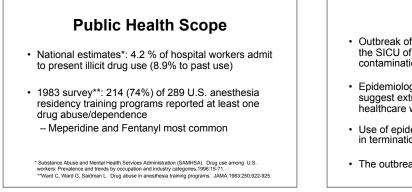

Hospital Administration Actions


- Removed RT18
- · Asked consent to :
 - Search
 - Culture hands and antecubital fossa
 - Test for drugs (hair testing)


Multivariate Model for S. marcescens Bloodstream Infections

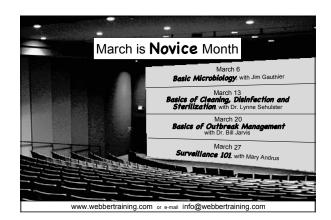
Exposure	Cases n=26 (%)	Controls n=65 (%)	Odds Ratio	p-value
Continuous fentanyl infusion	25 (96)	24 (37)	44	0.001
RT3	18 (69)	20 (31)	9.5	0.02
RT18	23 (88)	24 (37)	6.7	0.002





Summary

- Outbreak of *S. marscecens* bloodstream infections in the SICU of Hospital A associated with contamination of fentanyl
- Epidemiology, a witnessed event, and drug testing suggest extrinsic contamination by a single healthcare worker
- Use of epidemiology and laboratory methods aided in termination of outbreak
- The outbreak had complicating factors


Epilogue

- Official CDC reports were disseminated to Hospital A administration
- RT18 was permanently relieved of his duties
- A Hospital A official presented the findings to the District Attorneys Office- case not pursued due insufficient evidence
- State Health Department Officials informed

Summary

- An outbreak occurring at your facility may be an indicator of a nationwide outbreak.
- Combined laboratory and epidemiologic investigation can identify the source of the outbreak.
- Investigation-based prevention interventions can terminate the outbreak.

