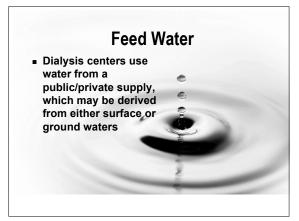


The findings and conclusions in this presentation are those of the author and do not necessarily represent the views of the Centers for Disease Control and Prevention

Adverse Outcomes in ESRD

- Insufficient treatment
- Dialysis-Associated Infections
- Intoxications/Chemical Poisoning
 - Water treatment failures
 - System design
 - Human errorManufacturing error
- Allergic Reactions
- Allergic Reactions
- Non-chemical associated hemolytic events
- Bleeding



I. Intoxications/Chemical Poisonings

- Failure to rinse germicide from dialyzers or hemodialysis system
- Water Treatment Issues
- Trace elements in water
- Malfunction of water treatment device
- Biologic Toxins in water supply
- Dialysate Quality
 - Use of acid concentrate instead of acetate concentrate

Hemodialysis

- Hemodialysis patients are exposed to approximately 300-600 Liters of water/week.
- On average approximately 16-24 L of water is ingested per week.

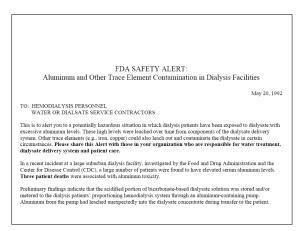
Water Contaminants

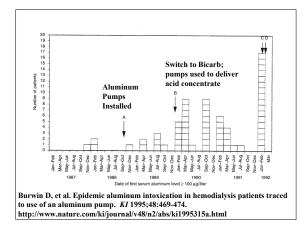
- Biological: Water bacteria, endotoxin, cyanobacteria toxins (anatoxin-A, microcystin-LR)
- Chemical/Trace Elements: aluminum, arsenic, barium, cadmium, calcium, chlorine, chloramine, chromium, copper, fluoride, lead, magnesium, mercury, nitrate, potassium, selenium, silver, sodium, sulfate, strontium, zinc
- Chemical Contaminants Associated With Dialysis Outbreaks: Aluminum, Chlorine/Chloramine, Calcium and Magnesium, Copper, Strontium

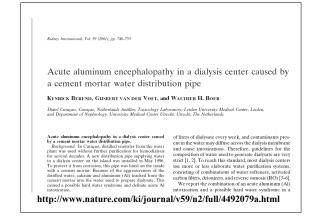
Clinical Effects of Contaminated Water

Symptoms	Chemical Contaminant
Anemia	Aluminum, Chloramines, Copper, Zinc
Bone Disease	Aluminum, Fluoride, Strontium
Hemolysis	Chlorine/Chloramines, Copper, Nitrates
Hypertension	Calcium, Sodium
Hypotension	Bacteria, Endotoxin, Nitrates

Clinical Effects of Contaminated Water


Symptoms	Chemical Contaminant	
Metabolic Acidosis	Low pH, sulfates	
Muscle Weakness	Calcium, Magnesium	
Neurological Deterioration and Encephalopathy	Aluminum	
Nausea and Vomiting	Bacteria, Calcium, Copper, Endotoxin, Iow pH, Magnesium, Nitrates, Sulphates, Zinc	


Water Contaminants And The Lowest Level Concentration Associated With Toxicity In Hemodialysis Patients


mg/L
0.06
0.25
1.0
0.49
0.2
21
200
88 (Ca ²⁺)
300

Aluminum Intoxications -Anemia, Bone Diseases, and Dementia

Year	Outbreak Description	Cause	Corrective Action
1982	Aluminum intoxication in 27 patients	Exhausted DI tanks	Install Reverse Osmosis and monitor DI tanks
1992	Aluminum intoxication in 27 patients; 3 deaths	Aluminum containing transfer pump (Acid Concentrate)	Discontinue pump use and substitute for a non aluminum containing pump
2007	Elevated serum aluminum levels in 10 patients (16–237 µg/L; median: 92)	Aluminum containing transfer pump (Acid Concentrate)	Discontinue pump use and substitute for a non aluminum containing pump

Aluminum Exposure, 2007

- Aluminum intoxication since 1992 is rare and sporadic
- Most aluminum exposure is from ingestion
- Other sources of Aluminum include some granular activated carbons

Aluminum Monitoring in Dialysis patients

- National Kidney Foundation Disease Outcome Quality Initiative (K-DOQI) guidelines recommend serum aluminum testing at least annually in all dialysis patients, and every 3 months in those who receive aluminum-containing medications
 - Cluster in 2007 was detected because of monthly serum aluminum levels
 - routine monitoring of serum aluminum levels can provide a useful tool in preventing serious illness among dialysis patients.

http://www.kidney.org/professionals/KDOQI/guidelines_pedbone/guide14.htm

Fluoride Intoxications, Among US Hemodialysis patients

Year	ar Description Cause		Corrective Measures	
1980	Fluoride Intoxication in 8 patients, 1 death	Excess fluoride in city water; no water treatment by the dialysis facility	Install pretreatment and Reverse Osmosis unit	
1993	Fluoride Intoxication in 9 patients, 3 deaths	Temporary DI water treatment system	DI tanks should be monitored by temperature compensate resistivity meters with both audible and visual alarms	

Symptoms of Acute Fluoride Intoxication

- Pruritis
- burning or feverish feeling
- Headache
- nausea or vomiting; or diarrhea
- syncope or near syncope
- pain in the chest, back, or abdomen

August 19. 1993

FDA SAFETY ALERT: FLUORIDE CONTAMINATION OF HEMODIALYSIS WATER SUPPLY

TO: Hemodialysis Personnel and Water or Dialysate Service Contractors

This is to alert you to a recent incident in which three hemodialysis patients died and several others were hospitalized after exposure to high levels of fluoride in their dialysate, and to urge that you take certain presentions to prevent other incidents of this kind. Please share this Safery Alert with those within your organization who are responsible for water treatment, dialysate delivery systems (including water testimet systems), and patient care.

In the incident, which was investigated by the Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC), the fluoride concentration in the dialysate was reported to be 15-25 pm; the ANSI/AAM istandard identifies 0.2 pm as a the acceptable level of fluoride in

The high concentrations occurred because the deionizer used to remove fluoride and other contaminants had become exhausted. Part of the problem may have been the warning lights on the deionizer tanks which are used to alter personnel that the deionizer is chausted. The previous model at the facility used a single light to indicate that the system was functioning properly; when the light went out, the system was nearing exhaustion and needed replacement or regenerating.

Toxigenic Cyanobacteria, Brazil 1996

- Toxins include hepatotoxins and neurotoxins
 - Microcystin-LR
 - Anatoxin A
- Only known dialysis exposure was in Caruaru, Brazil
 - · Center received untreated water: water was treated in center with carbon adsorption and DI
 - 116/130 patients had visual disturbances, nausea and vomiting, and liver failure; at least 50 patients had died
- If water was treated using reverse osmosis toxins would have been removed

Jochimsen EM, et at. Liver Failure and Death after Exposure to Microcystins at a Hemodialysis Center in Brazil. *NEJM* 1998;338 (13):873-8 http://content.nejm.org/cgi/content/abstract/338/13/873

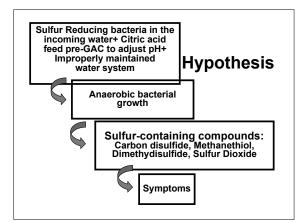
Human Error and **Chemical Intoxications**

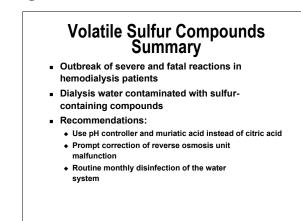
Patient exposure to disinfectants:

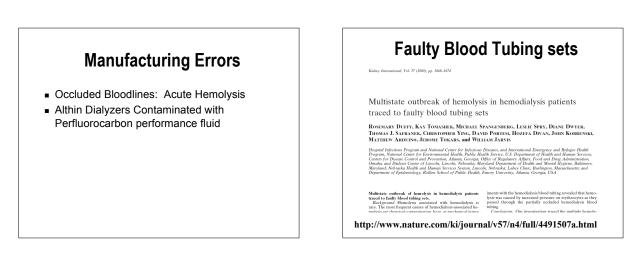
- Antimicrobial preservatives in filters
- Sodium azide packed ultrafilters Water treatment system disinfectants
- Formaldehyde
- Hydrogen peroxide Resizing water distribution system for increased flow without taking into account pre-treatment
- needs
- Monochloramine exposure Failure to adequately rinse disinfectant from Reprocessed dialyzers
- Peracetic acid
- Formaldehyde

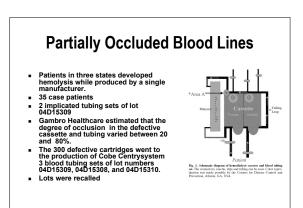
Sodium Azide Exposure

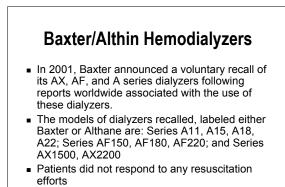
- Temporary water treatment system including DI and ultrafilters
- New industrial ultrafilters installed (not labeled for medical use)
 - Ultrafilters packed in 0.25% sodium azide and 25% glycerin to prevent bacterial contamination
- Severe life threatening hypotension in 9 patients, other symptoms included blurred vision, severe abdominal pain, headache, and loss of consciousness


Gordon SM, et al. Epidemic hypotension in a dialysis center caused by sodium azide. KI 1990; 37:110-115 http://www.nature.com/ki/journal/v37/n1/pdf/ki199015a.pdf


Volatile Sulfur Compounds August 30, 2000


- 16 patients developed chills in the absence of fever and hypotension
- Odor (H₂S) in the unit detected
- Other symptoms: nausea, vomiting
- All were hospitalized
- One died within hours


Toxic Effects of Sulfur Containing Compounds


- Toxic effects resulting from inhalation. ingestion or dermal exposure
 - Gastrointestinal
 - Respiratory
 - Central Nervous System
 - Skin
- NO documented parenteral exposures in humans

Baxter/Althin Hemodialyzers

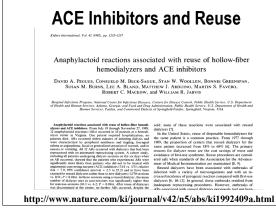
- The total death count as a result of the use of Baxter's affected dialyzers globally is over 50 hemodialysis patients. Spain, which had the first cases reported, had a total of 12 deaths.
- Highest mortality occurred in Croatia, which had 23 deaths.
- Four deaths occurred in the U.S. with two in Austin, TX, and two in Kearney, NE.
- Deaths also occurred in Colombia, Italy, Germany, and Taiwan

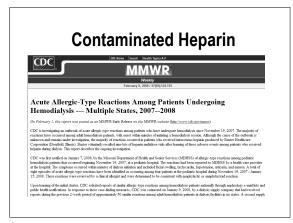
Perfluorocarbon Performace fluid

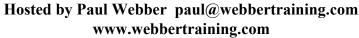
- PF5070, perfluorocarbons play a prominent role in the process known as "dialysis repair" and has been used throughout the dialysis industry for more than 30 years without a problem
- To repair fibers in the manufacturing process that fail the initial leak test. PF5070 is then allowed to evaporate out of the dialyzer
- PF5070 Characteristics:
 - liquid at room temperature
 - a gas at body temperature
 - insoluble in plasma

For additional information See: http://biomed.brown.edu/Courses/BI108/BI108_2007_Groups/group05/pages/baxter.html

PF5070 Exposure


- Cardiac arrest
- Repsiratory Failure
- Severe hypotension, loss of consciousness
- Dyspnea
- Chest pain/Abdominal pain
- Nausea and vomiting


Gasparovic V, Ostojic R. Unexpected hemodialysis-related deaths in Croatia. J NEPHROL 2002; 15: 194-197


http://www.sin-italy.org/vecchiosito/jnonline/Vol15N2/194.html

Allergic Reactions

- May or may not occur in clusters
- Usually patients are easily identified and respond to changes in therapy, ie different reuse chemicals, different dialyzer membrane, preprocessing of hemodialyzers before use, benadryl

Heparin Related Symptoms

- confirmed case episode of anaphylactic or anaphylactoid reaction characterized by angioedema (particularly swelling of lips/mouth, tongue, throat, or eyelids) or urticaria.
- A probable case had at least two of the following signs and symptoms:
 - generalized or localized sensations of warmth
 - numbness or tingling of the extremities
 - difficulty swallowing
 - · shortness of breath, audible wheezing, or chest tightness
 - low blood pressure/tachycardia
 - nausea or vomiting.

Acute Allergic Reactions from Contaminated Heparin

- Oversulfated chondroitin sulfate OSCS) identified as a contaminant
- Directly activates complement and kallikrein systems
- Contaminated heparin products have now been found in at least 10 countries
- May also stimulate cytokine production
- Products from multiple suppliers received contaminated active pharmaceutical ingredient (API) Baxter Healthcare
 - BBRaun
 - Covidien
 - American Health Products

http://content.nejm.org/cgi/reprint/NEJMoa0803200v2.pdf

The NEW ENGLAND IOURNAL of MEDICINE

ORIGINAL ARTICLE

Contaminated Heparin Associated with Adverse Clinical Events and Activation of the Contact System

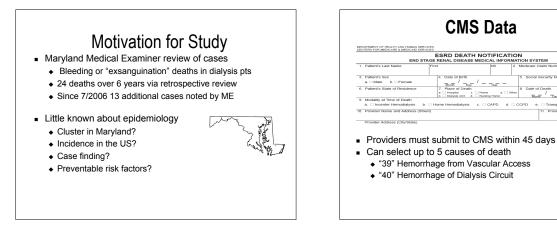
Takashi Kei Kishinoto, Ph. D., Karthik Visuwanshina, Ph. D., Tammoy Ganguly, Ph.D., Subbiah Elankumatan, Ph.D., Seen Smith, B.S., Revin Petzer, Ph.D., Jorathan C, Lansing, Ph.D., Narinatowa Srianganathan, Ph.D., Garlini Zhao, M.D., Zoga Galcheas-Gargoza, Ph.D., Ali Al-Hakim, Ph.D., Gregory Sorti Bailey, B.S., Blair Frazer, Ph.D., Sucharlt as Koy, Ph.D., Thomas Regers-Cotrone, M.S., Lucinda Buinse, Ph.D., Marki Whany, Ph.D., Thomas Regers-Cotrone, M.S., Gareid, J.D. and M.D., Zakaya, Shriver, Ph.D., Aboder S. Langer, S.C.D., Gareish U-Pan, M.D., Zachay, Shriver, Ph.D., Aboder S. Langer, S.C.D., Ganesh Venkatraman, Ph.D., K. Frank Austen, M.D., Janet Woodcock, M.D., and Pen Stavishkaran, Ph.D.

 Directly activated the kinin–kallikrein pathway in human plasma

OSCS induced generation of C3a and C5a,

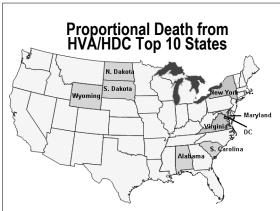
Non-chemical Associated Hemolysis

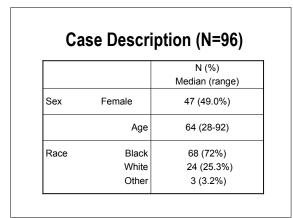
- Dialysate temperature ≥ 40°C
 - Tielemans CL, Herbaut CR, Geurts JO, Dratwa M. Hemolysis and consumption coagulopathy due to overheated dialysate. *Nephron* 1982;30(2):190-1.
 Hecht B, Berkman P, Risch ME. Letter: Hemolysis from hot dialysate. *Ann Intern Med.* 1975 Dec;83(6):902-3.

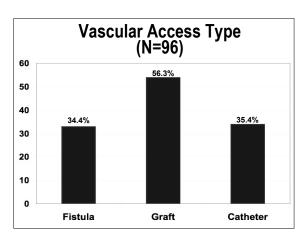

 - Berkes SL, Kahn SI, Chazan JA, Garella S. Prolonged hemolysis from overheated dialysate. *Ann Intern Med.* 1975 Sep;83(3):363-4.
- Dialysis against distilled water Pendergrast JM, Hladunewich MA, Richardson RM. Hemolysis due to inadvertent hemodialysis against distilled water: Penils of bedside dialysate preparation. Crit Care Med 2006;34(10):2666-73.
- Kinked Blood tubing

Hemolytic Dialysis Events

- Sometimes rare/sporadic events
- Clusters usually represent exposure to chemical agent
 - Differentiate from all potential causes
 - * Kinking of tubing sets (Make sure using correct tubing set for machine)
 - * Needle burs
 - * Monochoramine/chlorine exposure
 - * Drug reaction

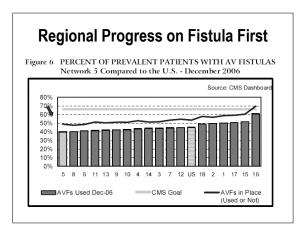

Bleeding/Exsanguination Events


- Current CDC investigation to determine risk factors
 - Exsanguination Deaths among Dialysis Patients: District of Columbia, Maryland, Virginia 1/2000 - 7/2007 (Ellingson K, Lucero C, Kurkjian K, Palekar R, Chai D, Schlossberg D)
 - Access failures * Fistulas, Grafts, catheters
 - Line separation




Analysis of CMS Data CMS provided CDC with COD data for 2000-07 Hemorrhage from Vascular access (HVA) and hemorrhage of dialysis circuit (HDC) accounted for 3.7/1000 ESRD deaths with known causes ◆ 5.7/1000 ESRD deaths in MD (6th in US)

- ◆ 6.5/1000 ESRD deaths in DC (2nd in US)
- 5.4/1000 ESRD deaths in VA (7th in US)
 - * 1700+ deaths nationwide HVA/HDC codes
 - * 18% ESRD deaths listed not coded or unknown



Bleeding and Access Complications (N=73)

- 20.5% had documented history of a serious vascular access hemorrhage
- 72.6% had documentation of ANY access-related complications within the past 6 months
 - ♦ 30.1% Clotting
 - ◆ 27.4% Prolonged bleeding after dialysis
 - 20.6% Stenosis
 - ♦ 16.4% Superficial infection at access site
 - 13.7% Extensive vascular access infection
 - 11.0% Aneurysm or pseudoaneurysm
 - 4.1% Graft erosion

Summary of Prototypes

- History of access-related problems/concerns
 E.g. Infection, prolonged bleeding, erosions, aneurysms, clotting, repairs/revisions
- Anticoagulation-related events
- Dialysis heparinization, systemic anticoagulation
- Psychosocial concerns
 - Depression, mental conditions, financial concerns, substance
 use, non-compliance
- Medical errors
 CVC insertion events, needle dislodgements

Preventing Adverse Events

- Follow standards and recommended practices
- Facility and System Designs
- Quality Assurance Performance Improvement (QAPI)
 Surveillance Systems
 - Data Analysis
 - Inventory Control
- Documentation
- Know when to ask for help

AAMI Standards and Recommended Practices

- RD62: Water treatment equipment for hemodialysis applications. ANSI/AAMI RD62-2006.
- Aimed at manufacturer's
- RD52: Recommended Practice-Dialysate for hemodialysis. ANSI/AAMI RD52-2004/A1-2007/A2/2007
 - Amendment 1- Annex C: Special considerations for home hemodialysis
 - Amendment 2 Annex D: Self-assessment of compliance with recommendations for dialysate preparation

Water for Hemodialysis Applications

- Defined Chemical agents
 - Group I: Agents known to cause adverse effects in patients
 - Group II: Agents known to be toxic for humans when
 present in potable water
 - Group III: Chemicals not normally harmful and are present in physiologic fluids and potentially dangerous if present in abnormal concentrations
- Defined levels for microbial contamination

Group 1 Maximum Allowable Chemical Contaminants Water for Hemodialysis Applications			
<u>mg/L</u>			
0.01			
0.50			
0.10			
0.10			
0.20			
2.00			
100.00			
0.10			

Water for Hemodia	ontaminant Levels lysis Applications
<u>Trace Element</u>	<u>mg/L</u>
Antimony	0.006
Arsenic	0.005
Barium	0.10
Beryllium	0.0004
Cadmium	0.001
Lead	0.005
Mercury	0.0002
Silver	0.005
Thallium	0.002
Chromium*	0.014
Selenium	0.09

Group III Chemicals: Water for Hemodialysis Applications

Calcium	2	0.1
Magnesium	4	0.3
Sodium	70	3
Potassium	8	0.2

Surveillance

- > On-line monitoring of water quality
- > Test for chlorine/chloramine prior to each patient shift
- Fest for hardness twice a day
- > On-line monitoring of TDS/Resistivity with temperature
- compensated meters (audio and visual alarms)
- Routine Environmental Cultures of Hemodialysis Fluids (monthly)
- At least annual chemical testing of water (preferrably with change of seasons)
- Patient Monitoring
 - > Pyrogenic reactions and/or bacteremia
 - > Other adverse patient reactions during dialysis

Surveillance System

- Documentation
 - Do you track lot numbers (drugs administered, dialysate concentrate, blood tubing sets, dialyzers, etc)
- Separate Log
 - Blood stream infections
 - Hepatitis sero-conversions
 - Adverse events (note symptoms and circumstances)

Understanding a Voluntary Recall

 FDA can encourage the firm to voluntarily correct the problem or to recall a faulty product from the market.

Email Listservers

- NephrolRenalpro
- To subscribe to Nephrol, RenalPro or other nephrology listserve See http://www.cybernephrology.org/communication/commProviders.htm
- DHQP Rapid Notification for Healthcare Professionals
- http://www2a.cdc.gov/ncidod/hip/rns/hip_rns_subscribe.html
- Free MMWR Subscription:
- http://www.cdc.gov/mmwr/mmwrsubscribe.html

Additional On-line Resources

CDC Dialysis Pages: www.cdc.gov/ncidod/dhqp/dpac.html

FDA Medwatch and E-listserv: www.fda.gov/medwatch

National Kidney Foundation-Kidney Dialysis Outcomes Quality Initiative (K-DOQI): www.kidney.org/professionals/KDOQI

Kidney Disease: Improving Global Outcomes (KDIGO): www.kdigo.org

United States Renal DataSystems: www.usrds.org

Fistula First: www.fistulafirst.org

THE	NEX	T FEW TELECLASSES
	22 May 08	Bedpan Decontamination - Manual vs. Machanical Speaker: Gertie van Knippengerg Gordebeke, International Consultant Infection Prevention and Hygiene, The Netherlands
	19 Jun. 08	Environmental Sampling - Methods and Strategies Speaker: Dr. Lynne Sehulster, CDC
	25 Jun. 08	(South Pacific Teleclass) Peripheral Line Sepsis Speaker: Dr. Steve McBride, Aukland District Health Board
	26 Jun. 08	CBIC Teleclass 3 - The CIC Examination Process: Computer Based Testing Speaker: CBIC Board Members & Guests
	17 Jul. 08	(Free Teleclass) Community-Associated MRSA - What's Up & What's Next Speaker: Dr. Rachel Gorwitz, CDC
	22 Jul. 08	(Free British Teleclass) Progress Report from the Chief Nursing Officer Speaker: Christine Beasley, British Department of Health
	24 Jul. 08	(Free Teleclass) Disinfection & Sterilization - Current Issues & New Research Speaker: Dr. William Rutala, University of North Carolina
N	ww.web	bertraining.com.schedulep1.php