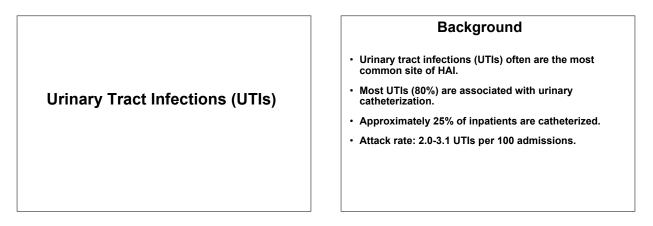
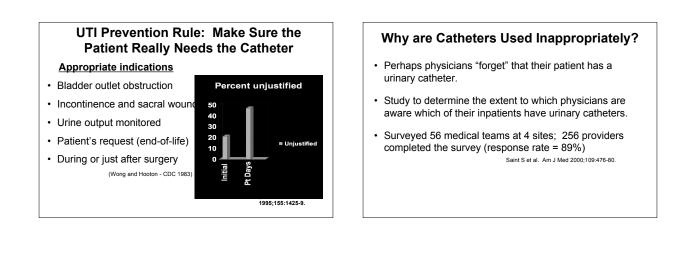

Teleclass sponsored by Virox Technologies & JohnsonDiversey www.virox.com www.johnsondiversey.co.uk

Purpose

- Provide an overview of the major evidencebased methods to prevent healthcareassociated infections (HAIs).
- Illustrate how applying current infection prevention and control measures can markedly reduce these HAIs—maybe even to ZERO.





- Good luck getting to (and sustaining) 100% compliance.
- Clinician accountability, driven by administrators, is essential. Infection control is everyone's responsibility, not just infection control's!
- Observations of hand hygiene compliance are tedious, personnel resource intensive, and subject to enormous inter-rater variability.
- Electronic monitoring is coming and may provide better coverage and better data!

Teleclass sponsored by Virox Technologies & JohnsonDiversey www.virox.com www.johnsondiversey.co.uk

rethral Cathet	ers: Lost in	n Place?	** URINARY CATHETER REMINDER **
Training Level	Proportion Unaware	95% CI	This patient has had an indwelling urethral catheter since// Please indicate below EITHER (1) that the catheter should be removed OR (2) that the catheter should be retained. If the catheter should be retained, please state ALL of the reasons that
Medical Student	18%	8-32%	Please discontinue indwelling urethral catheter; OR
Intern	22%	13-34%	Please <u>continue</u> indwelling urethral catheter because patient requires indwelling cath for the following reasons (please check all that apply): Urinary retention Urinary retention
Resident	28%	20-38%	 Very close monitoring of urine output and patient unable to use urinal or bed Open wound in sacral or perineal area and patient has urinary incontinence
Attending	38%	26-45%	Patient too III or fatigued to use any other type of urinary collection strategy Patient had recent surgery Management of urinary incontinence on patient's request Other - please specify:

Teleclass sponsored by Virox Technologies & JohnsonDiversey www.virox.com www.johnsondiversey.co.uk

Prevention of Catheter-related UTI using Silver Catheters: The Silver Bullet?

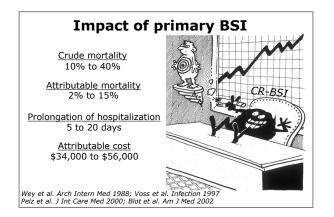
- Silver has in vitro antibacterial activity.
- Efficacy of silver catheters shown in meta-analysis of randomized trials (saint S et al. Am J Med, 1998).
- Additional cost of \$5.30 per silver catheter tray.
- Is the reduction in catheter-associated UTIs worth the extra cost?

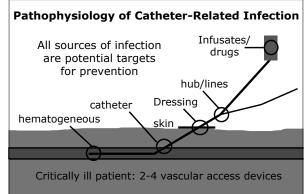
Review Types of utet Companion. D1 ANTISEPTI	val catheters for mara	gement of short-tem		•	ction)
Study	Silver alloy r/N	Standard n/N	Relative Risk (Fixed) 95% Ci	Weight (%)	Relative Risk (Fixed) 95% Cl
01 Silver alloy versus star Ledberg 1990a	ndard 3/30	25/60			8 24 [0.08, 0.73]
Ledberg 1998b	6/50	22/60		10.1	0.27 [0.12, 0.62]
Lundeberg 1988	8/51	17/51		7.8	0.35 [0 15.0 82]
Maki 1998	64/407	94/443		41.4	0 74 [0 50, 0,99]
Thibon 2000	9/90	13/109		5.4	D 84 [0.38, 1.87]
Verleyen 1999a	6/12	8/15		3.3	0 94 [0 45, 1 95]
Varleyen 19995	20/70	60 / 10 1	+	24.2	0 60 [0.43, 0 84]
Subtotal (95% CI) Test for heterogenexy ch-s Test for overall effect+-6 2:		239/839 0088	•	100.0	0 60 [0 50, 0.73]
		<i>.</i> 01	i	100	

Silver Catheters: What Is The Evidence Base?

- To date, 11 comparative studies and two meta-analyses of silver (the majority being the silver alloy urinary catheter) vs. non-coated Foley catheters have been conducted.
- In every comparative trial, the number of CA-UTIs has been decreased in the impregnated silver-coated catheter group compared to the noncoated catheter group.
- In some of these studies, the number of patients included has been small and thus a statistical significant decrease in CA-UTIs has not been documented (insufficient power). Nevertheless, in every study, a decrease in the rate of CA-UTI or CA-bacteriuria has been documented.

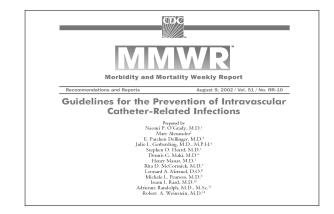
Silver Catheters: What Is The Evidence Base?

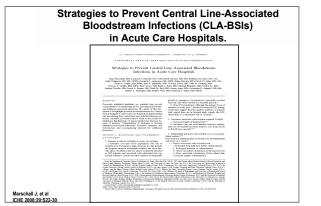

- In both meta-analyses, combining a variety of studies to increase the power to detect a difference in efficacy of silvercoated catheters, the authors have concluded that the silveralloy coated catheter is associated with a significant reduction in CA-UTI and CA-bacteriuria.
- These data strongly support that silver alloy hydrogel impregnated urinary catheters can decrease the risk of CA-UTI or CA-bacteriuria compared to non-coated catheters in patients who are to be catheterized for 3-7 days.

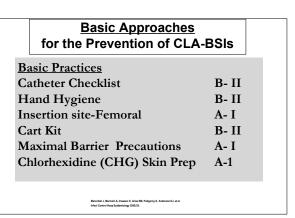

CA-UTI Prevention: Summary Recommendations

- · Use urethral catheters only when necessary.
- Use aseptic technique for catheter insertion and manipulation.
- Maintain a <u>closed</u> urinary drainage system.
- Require a urinary catheter insertion indication/order and consider using an administrative urinary catheter "stop order" to limit inappropriate catheterization.
- Consider silver catheters in high-risk patients who require catheterization for 3-7 days.

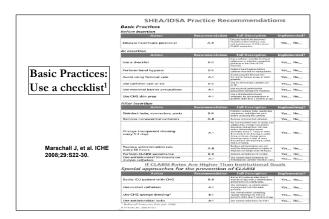
Preventing Central Venous Catheter-Associated Bloodstream Infections (CVC-BSIs)

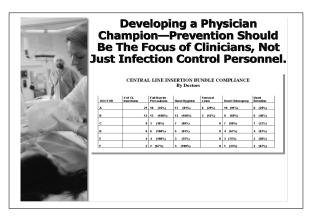

Teleclass sponsored by Virox Technologies & JohnsonDiversey www.virox.com www.johnsondiversey.co.uk

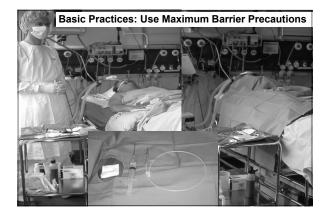


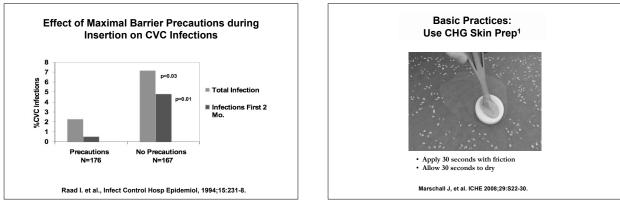


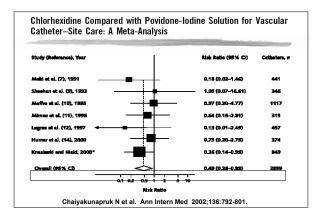
Preventing CVC-Related BSIs — First, Think About the Need.

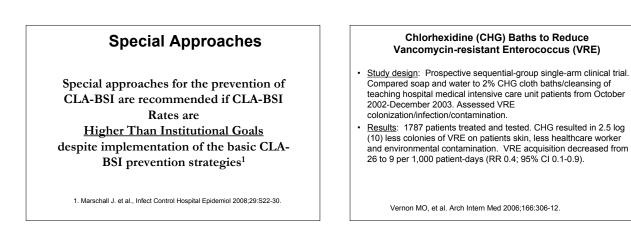

- Use intravascular catheters only when necessary
- Choose the lowest risk catheter appropriate for the patient's needs
 - Peripheral IV instead of CVC for short-term access in a patient who is not seriously ill
 - Peripherally inserted central catheter (PICC) or tunneled, cuffed CVC instead of percutaneous CVC for long-term access
- <u>Minimize the duration of catheterization</u>

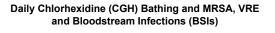




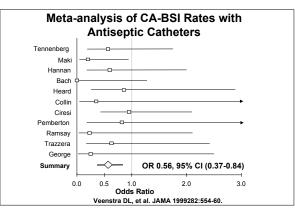

Teleclass sponsored by Virox Technologies & JohnsonDiversey www.virox.com www.johnsondiversey.co.uk

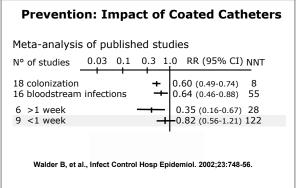


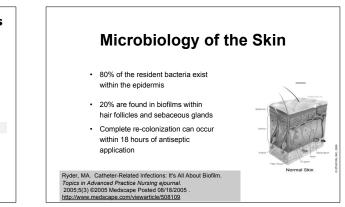


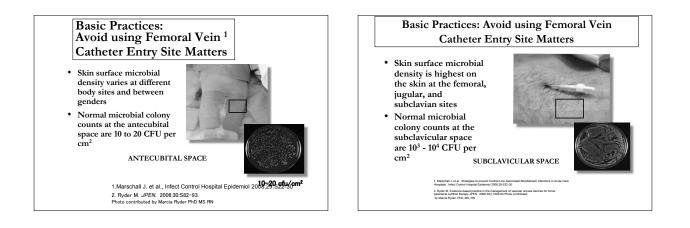


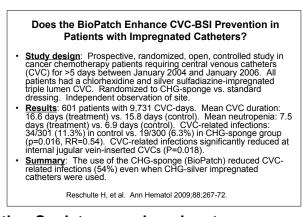
Teleclass sponsored by Virox Technologies & JohnsonDiversey www.virox.com www.johnsondiversey.co.uk

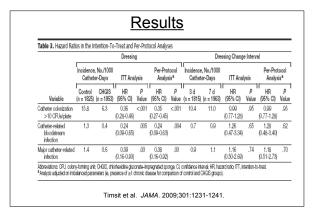

for the Prevention of	<u>aches</u> f CLA-BSIs
CHG Bath	B- II
Coated Catheters	A- I
BIOPATCH Disk	B- I
Antimicrobial Locks	A- I




- <u>Study design</u>: Before/after (6 months) study of soap and water vs. CHG solution daily bathing on MRSA or VRE acquisition and BSI at six intensive care units at four academic centers.
- <u>Results</u>: CHG bathing resulted in a decrease in: MRSA acquisition of 32% (5.04 vs. 3.44 per 1000 patient-days, p=0.046), VRE acquisition of 50% (4.35 vs. 2.19 per 1000 patient-days, p=0.008), of VRE-BSI (p=0.02), and of VRE-BSI in VRE-colonized patients (p=0.035).

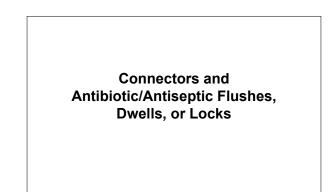

Climo MW, et al. Crit Care Med 2009;37:1858-65.

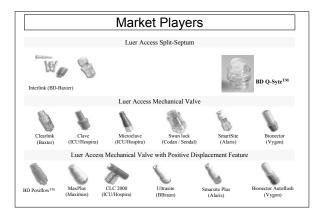

Teleclass sponsored by Virox Technologies & JohnsonDiversey www.virox.com www.johnsondiversey.co.uk



		G-impregnated Patch (BioPatch andomized Controlled Trials	n)
Only BioPa	лсн [®] has	extensive clinical experience – over 15	years
Author	Year	Meeting/Journal	No. of Patients
Timsit	2009	Journal of the American Medical Association	1,636
Garland	2001	Pediatrics	705
Ruschulte	2008	Annals of Hemotology	601
Maki	2000	Fortieth Interscience Conference of Antimicrobial Agents and Chemotherapy	589
Honeycutt	2007	APIC 34th Annual Education Conference & International Meeting	342
Levy	2005	Pediatric Infectious Disease Journal	145
Egol	2005	Journal of Bone and Joint Surgery	118
Chambers	2005	Journal of Hospital Infection	112
Shapiro	1990	Anesthesiology	57
Mann	2001	Anaesthesia and Intensive Care	55
Hanazaki	1999	Journal of Hospital Infection	50
Wu	2008	International Wound Journal	40
Karwowska	1995	Pediatric Research	35
Roberts	1998	Australian Critical Care	33

Teleclass sponsored by Virox Technologies & JohnsonDiversey www.virox.com www.johnsondiversey.co.uk





Does Vancomycin Lock or Flush Reduce CVC-BSIs?

- <u>Study design</u>: Meta-analysis of prospective randomized studies, 1966-2006.
- <u>Results</u>: Seven studies with 463 patients; cancer (n=5), NICU (n=1), cancer/TPN (n=1).
 - Summary risk ratio for vancomycin-heparin lock or flush = 0.49 (95% CI: 0.26-0.95, P=0.03).
 - Summary risk ratio for vancomycin-heparin lock: 0.34 (95% CI: 0.12-0.98, P=0.04)
- <u>Conclusion</u>: Use of vancomycin lock in high-risk patients with long-term IVDs reduces the risk of BSI.

Sadfar N et al. CID 2006;43:474-84

Increase in BSIs Temporally Associated with Switching From A
Split Septum to a Positive Displacement Needleless Valve
Device

- Study location: Academic medical center
- Split septum (SS) period: January 2003-February 2005
- <u>Positive displacement needleless valve (PDV) period</u>: March-August 2005

	BSI	Rate*		
<u>Unit</u>	SS Period	PDV Period	P-value	Post-PDV SS Period
Critical Care/ Transplant	3.87	10.43	<.0001	7.62
9 other inpatient	3.47	7.51	<.0001	2.36
Cooperative care (OPD TX)	5.80	15.18	.0005	4.30
*BSI Rate per 1,000 CVC-c	lays Rup	op M et al. CID 2	2007;44:1408	3-14

Teleclass sponsored by Virox Technologies & JohnsonDiversey www.virox.com www.johnsondiversey.co.uk

Increased BSI Rate Temporally Associated With Switching From A Split Septum to Mechanical Valve Needleless Device in a Long-Term Acute Care Hospital

- Study location: 40 bed long-term acute care hospital.
- Split septum (SS) period: January 2002-December 2003.
- Mechanical valve (MV) period: January 2004-October 2005.

	<u>SS</u> Period	<u>MV</u> Period	RR	<u>95% CI</u>	P-value
BSI Rate*	1.79	5.41	3.02	2.62-3.39	<.0001
GNB-BSIs	8%	39.5%	4.93	1.27-19.19	.0006

*BSI rate per 1,000 catheter days; BSI rate has decreased since returning to a split septum needleless device.

Salgado C et al. ICHE 2007;28:684-8.

Recommendations for Implementing Prevention and Monitoring Strategies: Approaches that <u>should not</u> be considered a routine part of CLA-BSI prevention

- Do not use antimicrobial prophylaxis for short-term or tunneled catheter insertion or while catheters are in situ (A-I)
- Do not routinely replace CVCs or arterial catheters (A-I).
- Do not routinely use positive-pressure needleless connectors with mechanical valves before a thorough assessment of risks, benefits, and education regarding proper use (B-II).

Marschall J. et al., Strategies to prevent Central Line Associated Bloodstream Infections in Acute Care Hospitals. Infect Control Hospital Epidemiol 2008;29:S22-30.

Keystone Project
Study design: Intervention cohort study in 108 Michigan Intensive care units (ICUs) over 18 months. Comparison of CVC-BSI rates before, during, and after intervention. <u>Results</u> : 103 ICUs. 1,981 months of ICU data and 375,757 catheter-days.
Median CVC-BSI Rates per 1,000 CVC-days

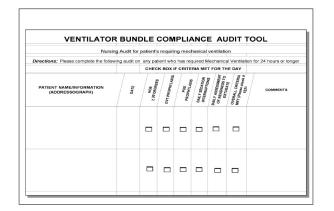
Baseline	3 Months	<u>IRR</u>	16-18 Months	IRR	
2.7	0	0.62	1.4	0.34	Ī

Conclusion: An evidence-based intervention resulted in a large and sustainable decrease (up to 66%) in CVC-BSI rates that was maintained for 18 months.

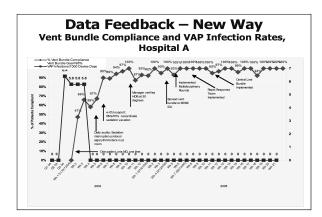
Pronovost P. et al NEJM 2006;355:2725-32

Ventilator-associated Pneumonia

Ventilator-associated Pneumonia (VAP) Background


- VAP is the most common healthcare-associated infection in critical care patients.
- Risk factors for VAP include age, chronic obstructive lung disease, trauma, gastric aspiration, duration ventilation, elevated gastric pH, etc.
- 10-20% of patients ventilated for >48 hrs will develop VAP.
- 10-15 episodes of VAP per 1,000 ventilator-days (approximately 1% per day of ventilation).

Ventilator Management Changes—The Bundle.


- · Chlorhexadine on the unit
- Oral care product
- Sedation reduction vs.
 Sedation vacation
- Using deep vein thrombosis (DVT) and peptic ulcer disease (PUD) prophylaxis prevent risk for vent patients
- Using ventilator weaning protocol
- Continuous aspiration of subglottic
- secretions

Teleclass sponsored by Virox Technologies & JohnsonDiversey www.virox.com www.johnsondiversey.co.uk

Oral Decontamination with CHG

- Koeman M et al. (AJRCCM 2006:173:1348-55): Randomized double blind placebo controlled trial of placebo vs. 2% CHG vs. 2% CHG/2% Colistin (CHG/COL) in
- controlled trial of placebo vs. 2% CHG vs. 2% CHG/2% Colistin (CHG/COL) in patients ventilated for >48 hours. Results: Compared with placebo, the risk of VAP was 65% for CHG (Hazard ratio [HR]=0.352; 95%CI: 0.16-0.79, p=0.012) and 55% for CHG/COL (HR 0.454; 95%CI: 0.22, 0.925, p=0.003). **Tantipong H et al.** (ICHE 2008;29:131-6): RCT (2%CHG vs. Saline, 4 times per day) and meta-analyses. Results: Incidence of VAP: 5/102 (5%) in CHG vs. 12/105 (11.4%) in Saline group: p=08. Rate per 1,000 Ventilator-days: CHG: 7; Saline 21; p=04. Meta-analysis of 2 RCTs: Overall Relative Risk for VAP in CHG group = 0.53 (95%CI, 0.31-0.90, p=.02). Sane CS at 1. (ICMC 2009:24:EA(-62): Pre, vs. Past-intervention observational
- 0.53 (95%Cl, 0.31-0.90, p=.02). Sona CS et al. (JICM 2009;24:54-62): Pre- vs. Post-intervention observational study. Intervention: cleansing teeth with sodium monoflurophosphate paste and brush, rinse with water, then application of 0.12% CHG solution twice daily. Results: Pre-intervention: VAP rate per 1,000 vent-days: 5.2 vs. 2.4 in intervention period; p=0.04. Staff compliance = 81%. Chan EY et al. (BMJ 2007;334:889): Systematic review and meta-analysis. 11 trials with 3242 patients. Oral antibiotics: 1098 patients---no significant reduction in VAP. Oral antiseptics: significant reduction in VAP (RR 0.56, 95%Cl: 0.39-0.81).

Comparative Trial of the Silver-Coated Endotracheal Tube

- **Objective:** To determine whether a silver-coated endotracheal tube reduces the incidence of microbiologically confirmed VAP.
- Study design: Prospective, randomized, single-blind, controlled study in 54 North American centers. 9417 adult patients (≥18 years) expected to require mechanical ventilation for 224 hours were randomized. VAP incidence was based on quantitative bronchoalveolar lavage fluid culture with ≥10⁴ colony-forming units/mL.
- Intervention: Patients were assigned to undergo intubation with 1 of 2 high-volume, low-pressure endotracheal tubes, similar except for a silver coating on the experimental tube.
- experimental tube. **Results:** Rates of microbiologically confirmed VAP were lower in the silver group than controls (3.8% vs. 4.8%, P = .03). The silver-coated endotracheal tube was associated with delayed occurrence of VAP (P = .005). No statistically significant between-group differences were observed in durations of intubation, ICU stay, and hospital stay; mortality; and frequency and severity of adverse events. <u>Conclusion</u>: Patients receiving a silver-coated endotracheal tube had a statistically significant reduction in the incidence of VAP and delayed time to VAP occurrence compared with those receiving a similar, uncoated tube.

Koleff MH et al. JAMA. 2008:300:805-13

The Importance of Nursing Education

- Study design: European intensive care unit (ICU) nurses were tested on knowledge of evidence-based guidelines for preventing VAP. A validated multiple-choice questionnaire was distributed in 22 European countries from October 2006–March 2007.
- Results: There were 3329 questionnaires (response rate 69.1%). The average score was 45.1%.
 - 55% knew that the oral route is recommended for intubation;
 - 35% knew that ventilator circuits should be changed for each new patient;
 - 38% knew that heat and moisture exchangers were the recommended humidifier type, but only 21% knew that these should be changed once weekly;
 - 46% recommended closed suctioning systems; 18% knew that these must be changed for each new patient;
 - 51% recognized that subglottic secretion drainage reduced VAP;
 - 57% recognized that kinetic beds reduce VAP incidence; and
 - 85% knew that semi-recumbent positioning prevents VAP.
 - Professional seniority and number of ICU beds were shown to be independently associated with better test scores.

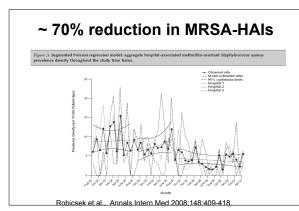
Labeau S. et al., J Hosp Infect. 2008;70:180-5

Prevention of VAP

- Standard infection control practices (e.g., hand hygiene).
- Minimizing duration/intensity of sedation and device exposure.
- Positioning patient in semi-recumbent position (40 degree). Appropriate use of enteral feeding, antibiotics and selected medical devices.
- Use of sterile water for irrigation.
- Closed suction system.
- Mouth care-chlorhexidine mouth/teeth cleaning.

Safdar N et al CCM 2005;33:2184; Patel PJ et al SRCCM 2002;23:415-425; Hugonnet S et al ICHE 2004;25:1090-1096.

Teleclass sponsored by Virox Technologies & JohnsonDiversey www.virox.com www.johnsondiversey.co.uk


Sce STAPH, Page 5

Recommendations For Preventing MRSA Transmission-Active Detection and Isolation (ADI)

- · Conduct a risk assessment;
- Active surveillance testing to identify MRSA-colonized patients;
- · Isolation (cohorting) of colonized and infected patients;
- · Hand hygiene-before/after patient/environment contact;
- Gown and glove, if patient or contaminated environmental contact anticipated; and
- Routine environmental cleaning.

Does True Universal MRSA Screening Reduce Transmission and MRSA Infections?

- <u>Study Design</u>: Observational, prospective interventional study with **universal screening** using MRSA-PCR on all admissions to three hospitals (total: 850 beds and 40,000 admissions per year) in Evanston, III.
- <u>Compared</u>: Passive surveillance (clinical detection-12m); Targeted surveillance cultures (clinical culture + high risk = ICU-12m); or Universal patient screening--21m.
- August 2005 to September 1, 2006.
- Intervention: Nasal screening. MRSA+ contact isolation, topical decolonization (mupricin).
- Poisson and segmented regression models used to compare prevalence density. Robicsek et al. Annais Intern Med 2008;148.409-418

- The national initiative focuses on implementing the <u>VHA MRSA</u> <u>Bundle</u> which consists of four essential elements (ADI):
- Active Surveillance Testing [AST](Admission/Transfer/Discharge Swabbing)
- Hand Hygiene
- Contact Precautions
- Cultural Transformation (Leadership and Staff Engagement)
 Consistent use of the VHA MRSA Bundle had been shown to
- Consistent use of the VHA MRSA Buridle had been shown to markedly reduce MRSA-related infections in the pilot facilities.
- Phase I: The VHA system began doing universal patient testing in 2006 at its approximately 150 hospitals in ICU patients.
- Phase II of the initiative began in March 2007 and was a national roll-out including all VHA medical facilities with all patients (ICU and non-ICU).
- MRSA prevalence on admission ranged from 5% to 22% (clinical culture 1-1.5%; AST 9%-12%).

Teleclass sponsored by Virox Technologies & JohnsonDiversey www.virox.com www.johnsondiversey.co.uk

Year	FY06	FY07	FY08	FY09
ICU-MRSA-HAI Rate*	1.37	1.36	1.20^	0.79^
Non-ICU MRSA Rate			0.54	0.378#

*Rate per 1,000 bed-days 07 vs. 08: P=0.04; 08 vs. 09: P<0.001;

Universal surveillance by PCR for S. aureus followed by decolonization · Randomized trial - PCR identification of S. aureus in patients admitted to the hospital. - Decolonization with nasal mupirocin and chlorhexidine bathes. Kluvtmans et al. ICAAC 2008. Abstract #: K-1711

	mupirocin and	placebo	
	chlorhexidine (n=504)	(n=413)	RR (95% CI)
primary outcome			\sim
nosocomial <i>S. aureus</i> infections – no (%)	17 (3.4)	32 (7.7)	0.42 (0.23-0.75)
source of <i>S. aureus</i> infection - no (%)			
endogenous	12 (2.4)	25 (6.1)	0.39 (0.20-0.77)
exogenous	4 (0.8)	6 (1.5)	0.55 (0.16-1.92)
unknown	1 (0.2)	1 (0.2)	
localization of <i>S. aureus</i> infection - no (%)			
surgical site (deep)*	4 (0.9)	16 (4.4)	0.21 (0.07-0.62)
surgical site (superficial)*	7 (1.6)	13 (3.5)	0.45 (0.18-1.11)
lower respiratory tract	2 (0.4)	2 (0.5)	0.82 (0.12-5.78)
urinary tract	1 (0.2)	0 (0)	
bacteremia	1 (0.2)	1 (0.3)	
soft tissue	2 (0.4)	0 (0)	

Conclusions

- Many, If not most healthcare-associated infections (HAIs) are preventable, with the implementation of simple, evidencebased interventions.
- Implementation of evidence-based prevention interventions, including the latest technology-which may initially cost more but also save more by reducing HAIs, should be a high priority for all infection control personnel.
- We should all be seeking ZERO Tolerance for HAIs.

(Free British Teleclass) Live Broadcast from the Infection Prevention Society Conference Fifty Years of Resistance Speaker: Prof. Gary French, Guy's & St. Thomas' Hospital, England (Free British Teleclass) Live Broadcast from the Infection Prevention Society Conference The Pursuit of Excellence During a Global Pandemic Speaker: Prof. Robert Pratt, Thames Valley University (Free British Teleclass) *Live Broadcast from the Infection Preventior* Society Conference Hot Off the Press - A Review of the Evidence Speaker: Dr. William Jarvis, President, Jason and Jarvis Associates (Free British Teleciass) Live Broadcast from the Infection Prevention Society Conference Moving on from Audit - Quality Improvement Tools for Infection Prevention Speaker: Dr. Neil Wigglesworth, Salford Royal NHS Trust www.ips.uk.net