

Pathogen	Number Cases	Estimated Cost (CAN\$ m)
Campylobacter	54000	128
Salmonella	29000	106
Yersinia	4300	
VTEC	1800	115
Shigella	457	
Listeria	17	

The food link

- Human pathogens in the environment
- Animal-to-Animal
- Animal-to-Person
- Person-to-Person
- Waterborne
- Foodborne

The Foodborne Link

- Listeria monocytogenes
- Clostridium difficile
- MRSA

Listeria monocytogenes

- Gram positive nonspore forming rod
- Facultative anaerobe
- Catalase positive
- Oxidase negative
- heamolytic

Psychrotrophic

- Growth range 1 44°C
- Opt temp 35-37°C
- pH 5.0 9.6
 (opt 6 8) Survives at pH 4
- Min a_w 0.93
- Can survive in 25-30% NaCl solutions

Illness

Healthy individuals: Mild flu

High risk groups (young, pregnant, old, immunocompromised: Stillbirth or abortion Meningitis Septicemia Pneumonia

- Infective dose 10⁹
- High risk groups 10³
- 30% mortality rate
- Incubation period 1-4 weeks
- Illness can last 1-90 days

- Approx. 2500 human cases/year in the U.S., resulting in about 500 deaths/year
- Endemic in certain processing environments
- Carriage on raw materials
- · Grows at refrigeration temperatures

History of Listeria monocytogenes

- Isolated from diseased rabbit in 1926
- Named after Lord Lister
- Animal Diseases
- Circling disease
- Silage sickness
- Leukocytosis
- Cheese sickness Tiger river disease.

Human Listeriosis

Zoonotic

- Widely distributed in the environment
- Commonly linked to wild and domestic animals
- Asymptomatic carriers (10% carriers in the GI tract)

Foodborne

- More common in urban rather than rural populations.
- Linked to raw milk derived from cows suffering listeriosis.

Confirmation of Foodborne Link

- 1981: Maritime Canada involving 41 cases and 18 deaths
- Coleslaw prepared from cabbage fertilized with sheep manure
- Amongst the most significant foodborne pathogens.

Key Products linked to LM

- Deli meats (1.82%) Seafood Salads (4.7%) Smoked seafood (4.31%) Deli salads (2.36%) Luncheon meats (0.89%) (Gombas et al., 2003)
- *L. monocytogenes:* Pilgrims Pride largest recall in history 27.4m lbs deli meats

Year	Product	Number of cases	Deaths
1981 Canada	Coleslaw	41	5
1985 USA	Mexican Cheese	142	48
1992 France	Deli Meat	279	85
2004-2007 USA	Queso Fresco	135	22
2008 Canada	Deli Meats	65	20

Listeria Product Recalls

- 2003 2007: 19 product recalls
- 2008: 446 product recalls
- 2009: 6 product recalls (deli meat, sandwiches, leeks)
- Increased testing: Product recalls likely to increase

Carriage

- 5% of the population
- Asymptomatic carriers
- Cl. difficile infection (CDI or CDAD)
- 93 cases/100,000
- 2006-2008: >300 deaths within Ontario

Risk Factors for *Clostridium difficile* Associated Disease (CDAD)

- Exposure to antibiotics causes disruption of protective intestinal microflora
- flouroquinolones (e.g. Levaquin, Cipro) to be strongly linked to CDAD more than any other antimicrobial
- Most cases and outbreaks of CDAD occur in health care settings

Cause?

- Healthy people: good bacteria keeps bad under control.
- Antibiotics kill both the good and bad bacteria → C. difficile growth

Disease Symptoms

- Appear within 4-10 days of taking antibiotics or weeks after discontinuing medication
- Watery diarrhea
- Fever
- Loss of appetite
- Nausea
- Abdominal pain

History

- 1935: First isolation and characterization
- -"difficile" Difficult to culture

Up to 1980's: 80% of strains Toxinotype 0 A/B toxin negative Binary toxin negative

 1980's BI/NAP1/027, or NAP-1/027 Toxinotype III

Increased production of toxin A/B Binary toxin Fluoroquinolone resistance

BI/NAP1/027

- First *identified* in France in 1998; woman with PMC
- Later found to have been in US in 1980's
- Not considered to be relevant until 2004!
- In Ontario (in pigs) at least since 2000

Community Acquired CDI						
Many Patients Developed CDAD without Recent Hospital or Antimicrobial Exposure, Atlanta VA Hospital, 2003-2006						
Months since hospitalization	No. of patients	No. (%) <u>without</u> antimicrobial exposure within prior 30 days				
>1 to 4 weeks						
1-3 months	4	1 (25)				
>3-12 months		1 (17)				
> 12 months	44	18 (41)				
Totals	61	20 (33)				

What we know about Community Acquired CD

- Reports from Canada, the United States and Europe indicate that the rate of community-acquired *Clostridium difficile* infection may be increasing.
- A large proportion of cases of community-acquired C. difficile infection are not linked to recent antibiotic therapy, increased age, co-morbidity or prior hospital admission.
- Under reported
- Risk factors remain unknown

Rodriguez-Palacios et al. Emerg Infect Dis 2007;13:485-7

Slide adapted from J. Glenn Songer

Cattle

- 7.6% of diarrheic and 14/9% of non-diarrheic calves in Ontario
- 7/8 ribotypes recognized human pathogens
- Ribotype 027 and 017 identified

Pigs

- Cause of diarrhea, esp. in sucklings pigs (Waters 1998, Songer, unpublished data)
- Outbreaks increasingly reported
- Prevalence of colonization unclear
- Pig strains often indistinguishable from human strains, including 027 (Arroyo et al, unpublished data)

Rodriguez et al 2006

Retail Meat

- Ontario (Rodriguez et al , In press)
 - *C. difficile* in 18% of retail ground beef/veal
 Predominant strain, closely related to ribotype 027/NAP1
 - CDT+, 18 bp *tcdC* deletion, toxinotype III
- US (Songer et al, personal communication)
- ~20% of various processed meats
- Including ribotype 027

ΓοxV (BK/NAP7-8/078) Strains; Historically Rare, Recently More Common		
<u>Time</u> Prior to 2001	Tox V Isolates 10/6000	
2001-2005	10/600	
2006	6/125	
	3K/NAP7-8/078) 3 cally Rare, Recei <u>Time</u> Prior to 2001 2001-2005 2006	

Results from Recent Survey of Ontario Pig Farms

- Samples collected from June Nov 08
- 52 farms visited, 133 samples screened
- Higher recovery in effluent compared to fecal swabs.
- CD recovered on 15 farms (28% prevalence)
- 20 isolates

Characterization

16	078	+	+
1	027	+	+
3	Unknown	+	+

Conclusions

- *Cl difficile* highly prevalent (28%) on Ontario pig farms.
- Ribotype not linked to epidemic strain found in health care centres
- Possible link to Community Acquired infections.
- Foodborne pathogen?

Methicillin-resistant *Staphylococcus aureus* (MRSA)

Staphylococcus aureus

- Most common cause of nosocomial infection in humans. NCCLS 1999
- Pneumonia, surgical site infections, bacteremia
 Intoxication by heat stable toxin
- Intoxication by near stable toxi
 Commensal of many species
- Skin, nasal passages, perineum

40% of the population carry S. aureus

MRSA: Humans

- Account for up to 50% of nosocomial infections at some hospitals NCCLS 1999
 25% of nosocomial infections in US
- Majority of S. aureus are MRSA in many areas.
- Increased mortality, morbidity, costs

- Estimated MRSA infections in USA (1999/2000)
 125, 969 hospitalizations with MRSA infection
 - 31440 septicemia (10%)
 - •29823 pneumonia
 - •3.95/1000 hospital discharges
 - Overall methicillin resistance rate 43.2%

Kuehnert et al Emerg Infect Dis 2005

MRSA

Hospital Acquired

- Prolonged
- hospitilizationIntensive care units
- Intensive care unit
- Antibiotic therapy
- Surgery
- Close contact with infected patient

Community Acquired

- Young
- Poor hygiene
- Shared contaminated
 - items

 Crowded living
 - conditions
 - Schools
- Correction centres

 Cuts and abrasions

CA-MRSA

- CA-MRSA Genetically Distinct from HA-MRSA
- HA-MRSA: high virulence
- Accounts for 30-40% of MRSA cases
- 40% of Children with MRSA carry CA-strain

Cattle

- Sporadic reports of MRSA from cattle internationally
- Europe/Asia
- Under-detection, under-reporting?

- Mastitis in Belgium in 1972 (Devriese et al Res Vet Sci 1975)
- 0.18% of milk samples in Korea (Kwon J Antimicrob Chemother 2005)
- 2 diary herds in Hungary (Kaszanyitzky et al Acta Vet Hung 2004)
- 12/894 (1.3%) milk samples from Korea (Lee Appl Env Microbiol 2003)
- 0.18% of milk samples in Korea (Kwon J Antimicrob Chemother 2005)

MRSA in pig farmers/families

- Identification of identical strains of MRSA in pigs and pig farmers/families in the Netherlands (Voss et al 2005)
 - Infected and colonized
 - 23% of pig farmers colonized
- Pig farmers **760** times more likely to carry MRSA than the general Dutch population

North America

- Study in Ontario
 - MRSA is present in Ontario pigs
 Up to 90% prevalence on some farms

The Food Link

- Direct contamination of foods
 - Enterotoxin-associated disease
 - Colonization of people in contact
- Colonization of food handlers/preparers
 Subsequent contamination of food
- MRSA foodborne illness likely no different from typical *Staph aureus*, but can it lead to further community dissemination?

MRSA-Food Reports

- Outbreak associated with BBQ pork and coleslaw from deli
- MRSA; enterotoxin C producing
- · One food handler colonized with same strain

Retail Meat

- 2/444 (0.5%) retail chicken samples in Japan (Kitai et al J Vet Med Sci 2005)
- 1/69 (1.4%) retail chicken samples in Korea (Lee Appl Env Microbiol 2003)

Jones et al Emerg Infect Dis 1999

- · Foodborne risks currently unclear
- Risks likely greater from animal and human contacts
- · Food production risks likely more relevant for livestock personnel than food handlers and consumers

Conclusions

- · Food represents a significant vehical for emerging human pathogens.
- Cl difficile likely a foodborne pathogen
- Less evidence for MRSA
- · Establishing a foodborne link is first step to control.

Acknowledgements

 OMAFRA Sustainability Program OMAFRA RIT On-Farm Food Safety Adriana L. Maldonado Dr S Weese (Pathobiology, UoG) Dr R Friendship (Population Medicine, UoG)

March is Novice Month

Fundamentals of Disinfection, Antisepsis, and **Chemical Sterilization** Jason Tetro, University of Ottawa

Fundamentals of HAI Definitions Robert Garcia, Brookdale University, New York

Basics of Steam Sterilization Dr. Lynne Sehulster, CDC View

Basics of Controlling Device-Related Infections