

Operational Definition of Sterilization

A carefully designed and monitored process that will assure the probability that an item being contaminated to be equal to or less than one in one million (10^{-6})

Sterilization

- Kills all microorganisms, including HIGH numbers of bacterial spores
 - Heat (moist or dry)
 - Chemical gas or vapor
 - Radiation
 - Liquid chemical sterilizing agents (sporicides);
 - 6-10 hours exposure time
 - aldehydes
 - hydrogen peroxide
 - peracetic acid

Factors Affecting Sterilization or Disinfection

- AMOUNT OF ORGANIC MATERIAL
- Number of microorganisms
- Type of microorganisms (resistance levels)
- Type of germicidal agent
- Concentration of germicidal agent
- Exposure time to germicidal agent
- Temperature of exposure
- pH of solution
- Presence or absence of moisture

Attributes of the Ideal Sterilant*

- Highly efficacious
 - Bacteriocidal, sporicidal, tuberculocidal, fungicidal, virucidal
- Rapid activity
- Achieves sterilization quickly
- Strong permeability
 - Penetrates packaging materials and device lumens
- Materials compatibility

 Negligible changes in either appearance or function of processed items

Attributes of the Ideal Sterilant*

- Non-toxic
 - Poses no health hazards to the operator, patient, or the environment
- Organic material resistance
 - Withstands reasonable organic challenge without loss of efficacy
- Adaptability
- Monitoring capability
- Physical, chemical, or biological indicators
- Cost effective

Source: Schneider, PM. Low-temperature sterilization in the 1990's. 1994. Tappi Journal 77: 115-121.

Factors Affecting The Efficacy of Any Sterilization Process

- Implementing a consistent system for lowering and limiting bioburden before sterilization
- Properly preparing items for sterilization
- Selecting the appropriate sterilization parameters
- Establishing and implementing controls to maintain the sterility of sterilized items until they are used

Source: ANSI/AAMI ST 79: 2006

Effective Sterilization: Controlled Conditions

- For all physical processes:
 Time, temperature, relative humidity
- For liquid chemical processes:
 Time, temperature, pH, concentration
- For gas or plasma processes:
 - Time, temperature, gas concentration, relative humidity, wrapping

Moist Heat Sterilization

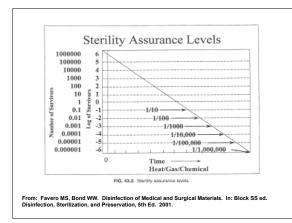
- All moist heat sterilization processes consist of four phases in their cycles:
 - Heating phase
 - Sterilization phase
 - Evacuation and cooling phase
 - Drying phase

Sterilization via Saturated Steam: Air Removal Mechanisms

- Air interferes with the ability of steam to make contact with items to be sterilized. Air is removed by:
 - Gravity displacement: incoming steam forces air to the bottom of the chamber for removal
 - Dynamic air removal (pre-vacuum or porous load): air is pumped out of the chamber mechanically in one or multiple cycles before steam enters

Key Definitions

- D value
 - Time necessary to reduce a microbial population by one log or 90% at a given temperature
- Z value
 - Slope of the thermal death time curve, or the number of degrees of temperature to change the D value by a factor of 10
- Energy of activation
 - Energy required to release spores from dormancy to germinate; also the energy required to initiate inactivation of microorganisms


Microorganisms on Death Row!

- Death of a microorganism
 - Failure to reproduce when suitable conditions for reproduction are available
- Death is a first order exponential, logarithmic function
- Spores have higher energy of activation thresholds
 - More energy required to inactivate dormant spores compared to actively growing vegetative cells

SAL and the Sterilization Cycle

- Determine the SAL using a BI (resistant spores)
 Determine process parameters
- Determine D value and construct inactivation curve
- A 6 log reduction is considered to be "half cycle"
- Extrapolate the inactivation curve to an additional 6 logs
- This results in a sterilization cycle with an SAL of 10⁻⁶, meaning there is the probability of one chance in a million that one of the 10⁶ spores used in the starting challenge survived.
- This approach is extraordinarily conservative

From: Favero MS, Bond WW. Disinfection of Medical and Surgical Materials. In: Block SS ed. Disinfection, Sterilization, and Preservation, 5th Ed. 2001.

Time (mins.)	Initial Bacterial Count	Bacteria Killed in 1 Minute	Remaining Bacterial Count	Logarithm of Survivors
1	1,000,000	900,000	100,000	5
2	100,000	90,000	10,000	4
3	10,000	9,000	1,000	3
4	1,000	900	100	2
5	100	90	10	1
6	10	9	1	0
7	1	0.9	0.1	-1
8	0.1	0.09	0.01	-2
9	0.01	0.009	0.001	-3
10	0.001	0.0009	0.0001	-4
11	0.0001	0.00009	0.00001	-5
12	0.00001	0.000009	0.000001	-6

Manufacturers' Considerations

- Assumption that the bioburden on a device is 10⁶ bacterial spores most resistant to the process
- For challenge tests, placement of the spores in the least accessible location
- Spores contained in "soil"
- Simulated use conditions
- Document 6 log kill at half-cycle
- Document that a cycle produces 6 log kill with a 10⁻⁶ probability that one spore survives

From: Favero MS, Bond WW. Disinfection of Medical and Surgical Materials. In: Block SS ed. Disinfection, Sterilization, and Preservation, 5th Ed. 2001.

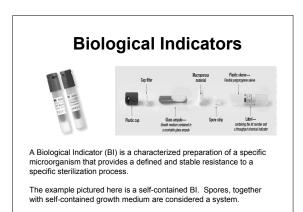
In Reality...

- Most medical devices have a bioburden of <10³
- Cleaning can reduce the bioburden by 3 5 logs
- Bioburden on medical devices is largely composed of vegetative bacteria, viruses, and fungi, and <0.1% are spores, if any

From: Favero MS, Bond WW. Disinfection of Medical and Surgical Materials. In: Block SS ed. Disinfection, Sterilization, and Preservation, 5th Ed. 2001.

Perspective of FDA and AAMI

- An SAL of 10⁻⁶ is generally accepted as appropriate for items intended to come into contact with compromised tissue (i.e., tissue that has lost the integrity of the natural body barriers)
- An SAL of 10⁻³ is considered acceptable for items not intended to come into contact with compromised tissue.

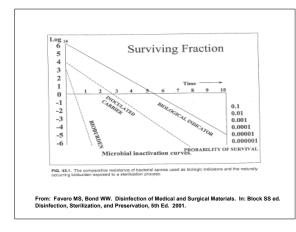

From: ANSI/AAMI ST 79: 2006; ANSI/AAMI ST 67: 2003

Advice From an Indoor Environmental Microbiologist

- "The proper method of reprocessing a heat-stable device is to AUTOCLAVE it! You COOK it! You don't gas it, you don't dunk it,
- YOU COOK IT!!!" W.W. Bond, MS

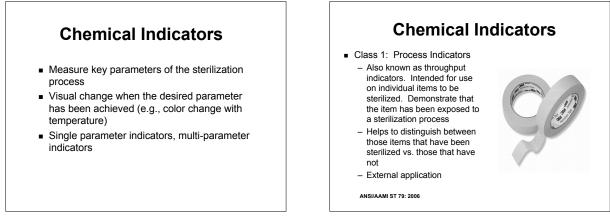
CDC Microbiologist (Retired)

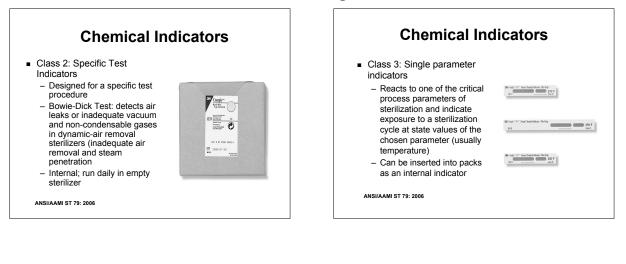
Life Was So Much Simpler Back Then...Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2"Image: Colspan="2">Image: Colspan="2"Image: Colspan="2">Image: Colspan="2"Image: Colspan

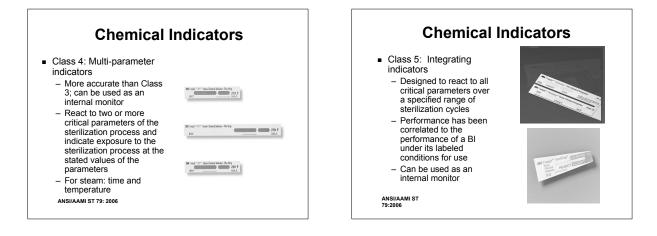


Biological Indicators

- A standardized preparation of bacterial spores on or in a carrier
- PCD process challenge device
- Serves to demonstrate whether sterilizing conditions have been met
- Considered to be the only true measure of sterilization process lethality
- BI must be placed in the most difficult site for sterilant penetration
- A positive BI indicates a process failure


Types of Biological Indicators


- Bacillus stearothermophilis
 - Moist-heat systems
 - Geobacillus stearothermophilis
- Bacillus subtilis
 - EO, dry heat systems
 Bacillus atropheus
- Bacillus pumilus
 - Radiation-based systems



- Equipment monitors that are engineered to detect any of these parameters:
 - Temperature, time
 - Pressure, gas concentration
 - Relative humidity
 - Steam purity
 - Delivered dose of sterilant

Chemical Indicators

Class 6: Emulating indicators

- Suppose to emulate or mimic the behavior of a BI
- Are cycle-specific: need an emulating indicator designed to validate a 10 minute/270° F cycle, and a different indicator to validate a 3 minute/270° F cycle
- Dr. W.A. Rutala: No professional organization (e.g., AORN, AAMI) has as yet recommended the use of Class 6 emulating indicators as a substitute for BIs
- No data that demonstrate it mimics a BI at suboptimal sterilization times

Use and Interpretation of Indicators

- Biological Indicators:
 - Use on each sterilizer periodically (e.g., at least weekly)
 - Use on each load of implantable devices
- Control BIs (not processed) for comparison
- Chemical and Physical Indicators
- External and internal indicators used for each item in the load
 Class 3, 4, or 5 indicators can be used
- Results of external indicators and chemical integrator
- challenge packs can be read at the end of the sterilization cycle
- Internal indicators must be interpreted at time of use

ANSI/AAMI ST 79: 2006

Routine Load Release: Non-Implant Loads

- Use the following monitors and indicators:
 Physical monitors
 - External process indicator (Class 1) on every package
 - Internal CI (Class 3, 4, or 5) inside every package
- Optional use of PCD for load monitoring:
 - BI, or a BI + a Class 5 integrator indicator, or a Class 5 integrator indicator
- Evaluate all monitoring data
- Do not distribute load if any data suggests a sterilization process failure

Slide info courtesy of M. Young, 3M

Flash Sterilization AORN, CDC Guidelines

- In 1969, Perkins redefined flash sterilization of an unwrapped item to the current definition of 270°F for 3 minutes in a gravity sterilizer.
- Flash used for items that must be used immediately
 Acceptable for proceeding items that cannot be packaged
- Acceptable for processing items that cannot be packaged, sterilized and stored before use
 Because of the potential for serious infections, implanted
- Because of the potential for serious infections, implanted surgical devices should not be flash sterilized unless unavoidable (e.g., orthopedic screws)
- Do not use flash sterilization for reasons of convenience, as an alternative to purchasing additional instrument sets, or to save time

Flash Sterilization AORN 2009 Guidelines

- Recommends the use of rigid sterilization containers
 - Reduce risk of contamination during transport to point of use
 - Ease of presentation to sterile field
- AORN states that in flash sterilization a Class 5 integrating indicator should be used inside each sterilizer container or tray

Slide info courtesy of M. Young, 3M

Routine Load Release: Implant Loads

- Include these monitors and indicators:
 - Physical monitors
 - External process indicators (Class 1) on every package
 - Internal CI (Class 3, 4, or 5) inside every package
 A PCD including a BI and a Class 5 integrating
- Implant loads should be quarantined until the BI results are known

Slide info courtesy of M. Young, 3M

Early Release and Emergencies: Implant Loads

- AORN 2009: Flash sterilization should not be used for implantable devices except in cases of emergency when no other option is available
- If flash is necessary for an implant load:
 - Use a rapid-action BI and a Class 5 CI integrator (or enzyme-only indicator)
 Quarantine implant and release only when the rapid-
 - action BI provides a negative result
 - Document the items processed, cycle parameters, patient receiving the item(s), day/time of cycle run, operator info

Slide info courtesy of M. Young, 3M

To Recall or Not: AAMI and AORN

- Question: If a BI is positive, only that load needs to be recalled. FALSE
- If determined to be an operator error:
 - Using incorrect sterilization cycle
 - No recall, don't use load
- If the reason is not known or it's not operator error:
 - Recall all items processed since the last negative BI
 - Reprocess all retrieved items

Slide info courtesy of M. Young, 3M

Use and Interpretation of Indicators

- Check the mechanical parametric readings (e.g., time, pressure) and internal/external chemical indicators (e.g., temperature) first
- When these suggest that the sterilizer is functioning properly, a single positive BI may not indicate process failure
- Take sterilizer out of service, review process of operation to determine possible error

Use and Interpretation of Indicators

- Repeat BI testing with controls on three consecutive sterilization cycles, empty chamber
- If all processed BI's are negative, return the unit to service
- If any of the processed BI's are positive:
 Recall the processed items from that unit, rewrap, and re-sterilize these items
 - Have the equipment repaired and repeat the BI challenge series

Extended Steam Sterilization Cycles

- Cycles recommended by the medical device manufacturer (MDM) that are longer than the minimum sterilizer manufacturer FDA cleared cycles
- Example: Synthes instruments and implants (wrapped)
 270-275°F (132-135°C) gravity steam sterilization cycle: 15 minutes
 - 270-275°F (132-135°C) pre-vacuum steam sterilization cycle, 3 pulse vacuum: 4 minutes
- Check with MDM for current instructions for all instruments
- Ensure that cycle indicators are appropriate for the extended cycle

Slide info courtesy of M. Young, 3M

Monitoring Extended Steam Sterilization Cycles

- No PCDs for monitoring extended cycles
- Include BIs and CIs inside trays
- Physical monitors:
 - Mark with correct date and sterilizer identification at the beginning of the cycle
 - Check cycle printout to verify cycle
 - parameters were met and initial
 - If not correct, do not release

Slide info courtesy of M. Young, 3M

Standards and Other Resources

- AORN 2009 Perioperative Standards and Recommended Practices (www.aorn.org)
- ANSI/AAMI ST79:2006 (www.aami.org)
- CDC/HICPAC Guidelines for Disinfection and Sterilization in Healthcare Facilities 2008 (www.cdc.gov/ncidod/dhqp/)
- FDA guidance documents
- (www.fda.gov/cdrh/guidance.html)
- ISO 11140-1: 2005(E) (www.iso.org)
- AS/NZS 4815-2006
- UK: Medical Device Agency documents

Thank You!

Division of Healthcare Quality Promotion Centers for Disease Control and Prevention

"Protect patients, protect health-care personnel, and promote safety, quality, and value in the health-care delivery system"

March is **Novice** Month

March 5 **Fundamentals of Disinfection, Antisepsis, and Chemical Sterilization** Jason Tetro, University of Ottawa

March 10 **Fundamentals of HAI Definitions** Robert Garcia, Brookdale University, New York

March 19 **Basics of Steam Sterilization** Dr. Lynne Sehulster, CDC

March 26 **Basics of Controlling Device-Related Infections** Loretta Litz Fauerbach, Shands Hospital, University of Florida