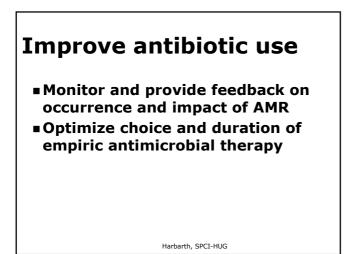
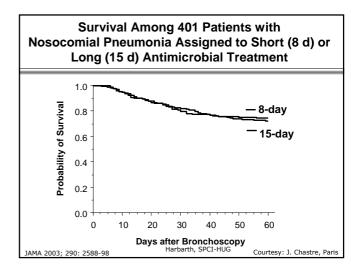


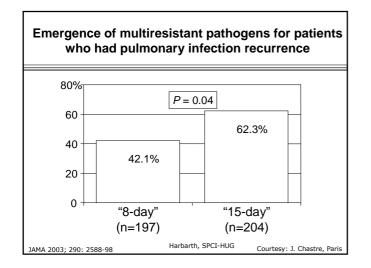
OUTLINE • Hospital setting • Strategic priorities • Antibiotic control policies • Ambulatory setting • Macro-level determinants • Country examples of successful changes

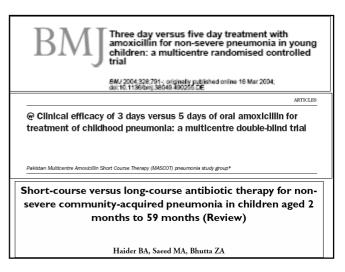
Improve antibiotic use

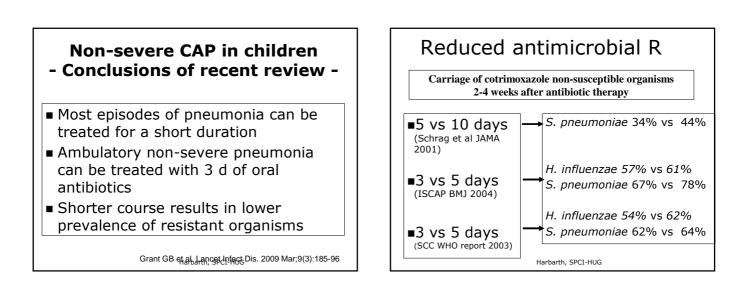
Monitor and provide feedback on occurrence of AMR

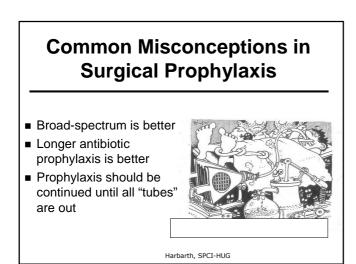

Harbarth, SPCI-HUG

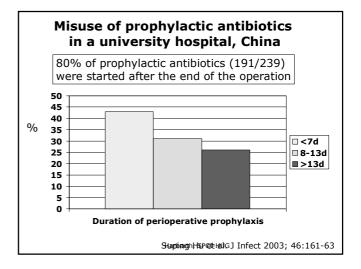

Control programs for multiresistant Staphylococcus aureus (MRSA)				
	Able to calculate the proportion of MRSA among all <i>S aureus</i> isolates			
Western Europe	25/43 (58%)			
Eastern Europe	13/27 (48%)			
Africa	1/6 (17%)			
USA	1/5 (20%)			
South America	4/6 (67%)			


The important role of sentinel hospitals

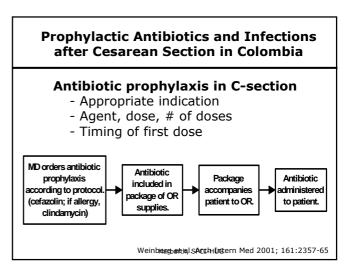

- Centralization of available laboratory resources in a few selected centers
- Monitoring and reporting of AB susceptibility data (WHOnet)
- Adapt empiric treatment regimens

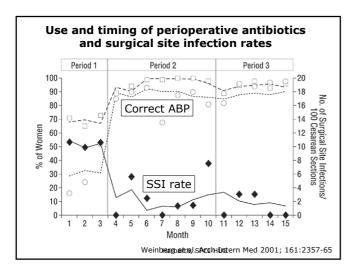

Archibald LK & Reller LB. Clinical Microbiology in Developing Countries. Emerg Infect Dis 2001; 7: 302-345_{arth, SPCI-HUG}

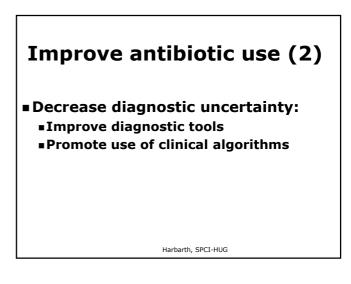


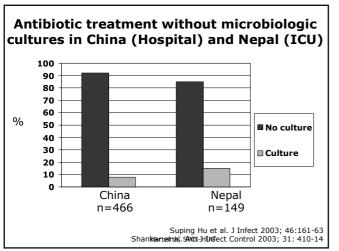


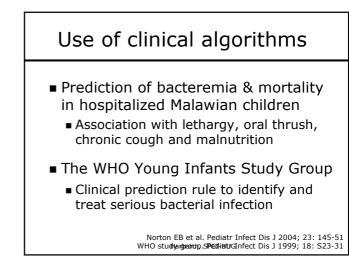
Antibiotic Prophylaxis and the Risk of Surgical Site Infections following Total Hip Arthroplasty: Timely Administration Is the Most Important Factor M.E.E. van Kasteren, J. Manniën, A. Ott, B.J. Kullberg, A.S. de Boer, I.C. Gyssens. Clin Infect Dis 2007;44(7):921-7 20 18 16 14 12 % SSI 10 8 6 4 2 0 31+ -200/-91 -90/-61 -60/-31 -30/-1 0-30 time to incision in minutes narbartin, SPCI-nue

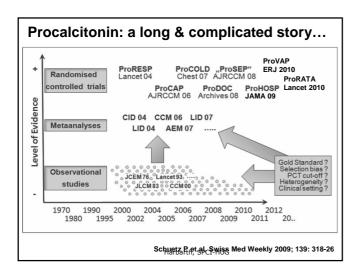

in a com	e of prophylactic antibiotics munity hospital, Saudi Arabia - representative cases
Procedure	Prophylactic antibiotics administered
Delivery Urinary cath	Ampicillin, amikacin, cefotaxime Amoxycillin, metronidazole
C-section	Cephradine, ceftriaxone, gentamicin, metronidazole
Appendectomy	Cephradine, cefoxitin, amikacin, metronidazole, TMP-SMX
Cystoscopy	Amikacin, tetracycline, ceftazidime, amoxycillin-clav
Cholecystectomy Incision	Cephradine, cefuroxime, gentamicin Ampicillin, amikacin, amoxycillin-clav, cephradine
Episiotomy	Amoxycillin, gentamicin, cephradine, metronidazole
Delivery	Amoxycillin, gentamicin, cephradine, metronidazole
	Al-Ghamdi,கெக், அ.ச. 40gp Infect 2002; 50:115-21

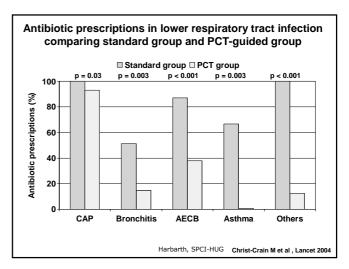

Cardiovascular surgery n= 2'641, multivariate analysis	< 48 h prophylaxis > 48 h prophylaxis	
	OR (95%Cl) > 48 h prophylaxis	Р
SSI	1.0 (0.8-1.3)	ns
Resistant Enterobacteriaceae/enterococci	1.7 (1.1-2.7)	0.027

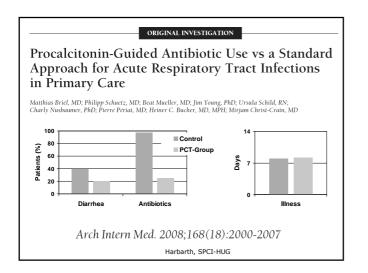

Duration of surgical prophylaxis and

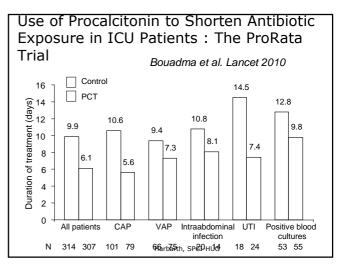

Improve perioperative
antibiotic prophylaxis (ABP)ProcessProblem areaSystem changes

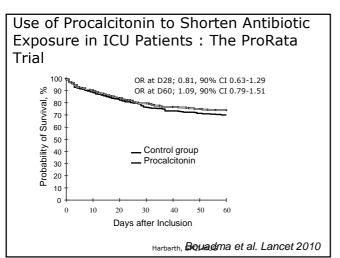

Process	Problem area	System changes
ABP choice appropriate	 Suboptimal Coverage too large 	- Guidelines - Adequate supply
Duration adequate	Too long (>1 dose)	- Standard order form
Timing correct	Too early or too late	 Administer in preoperative area Designate responsible person
	Huskins Harbarth SPCI-H	Glosp Enidemial 1998-19-125-35

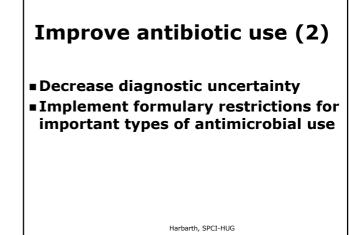


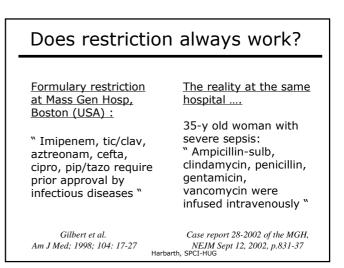












nospital exper	nditures and ba s: a lesson fron	
	a developing co	
Variable Pre-i	ntervention period (1995/96)	Intervention period (1997/98)
Vials (#)	199,427	132,496
Total costs (\$)	699,543	347,261
		istance rates

Improve antibiotic use (2)

- Improve diagnostic tools
- Implement formulary restrictions for important types of antimicrobial use
- Improve antimicrobial prescribing:
 - Education (pre- and postgraduate)
 - Practice guidelines
 - Administrative means (antibiotic order forms)

Feedback to prescribers
 Harbarth, SPCI-HUG

Implementing practice guidelines for appropriate AB use: Systematic review

- 40 studies (in- and outpatient areas)
- Multifaceted implementation methods were most successful
- Most useful implementation methods:
 - Locally adapted guidelines (drug committee)
 - Small-group interactive sessions
 - Academic detailing
 - Participation of opinion leaders
 - Feedback to prescribers

Gross PA et al., Med Care 2001; 39: Suppl 55-69

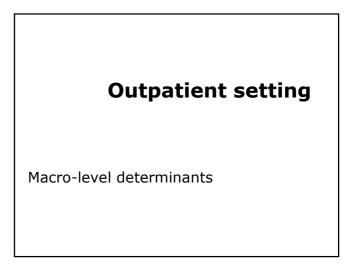
Impact of an educational program on antibiotic use in a tertiary care hospital in Thailand

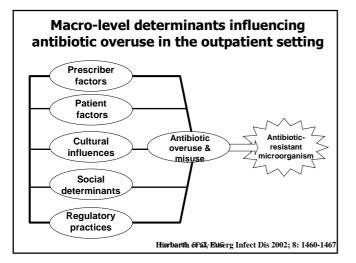
Appropriate antibiotic use (in-patients, %)

Variable	Preintervention period (n = 4305)	Postintervention period (n = 2830)	P
Inappropriate antibiotic use	1808 (42)	566 (20)	<.001
Reason for inappropriateness ^a			
Inappropriate surgical prophylaxis ^b	452 (25)	115 (20)	.02
Use of antibiotic without any evidence of infection	723 (40)	200 (35)	.04
Redundant spectrum	217 (12)	50 (9)	.03
Bacterial resistance ^c	235 (13)	91 (16)	.07
Narrow spectrum was available ^d	181 (10)	41 (7)	.04
Department ^e			
Surgery	633 (35)	170 (30)	.01
Obstetrics and gynecology	452 (25)	125 (22)	.17
Internal medicine	416 (23)	113 (20)	.14
Other ^f	307 (17)	113 (20)	.12

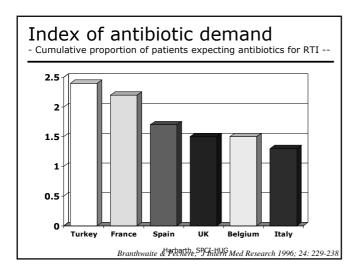
Impact of an educational program on antibiotic use in a tertiary care hospital in Thailand

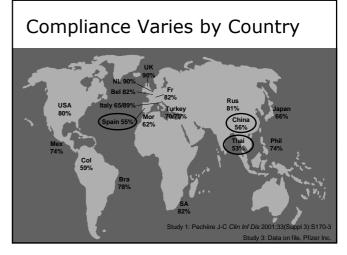
Antibiotic resistance


Microorganism	Preintervention period	Postintervention period	
Methicillin-resistant Staphylococcus aureus	48	33.5	
ESBL-producing Escherichia coli	33	21	
ESBL-producing Klebsiella pneumoniae	30	20	
Third-generation cephalosporin-resistant Acinetobacter baumanii	27	19	
Imipenem-resistant <i>Pseudomonas</i> aeruginosa	5	4	
Multidrug-resistant Acinetobacter baumanii	4	5	

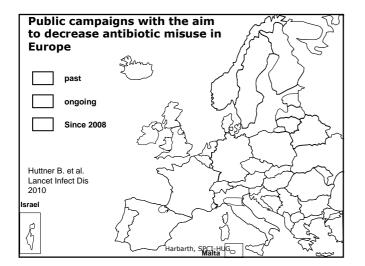

Interventions to improve quality of antibiotic prescribing for hospital inpatients (review)

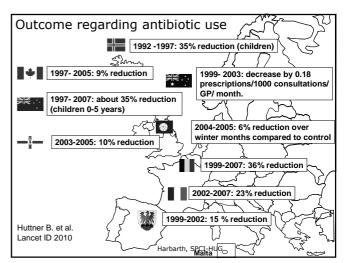

Davey P, Brown E, Fenelon L, et al. Cochrane Database of Systematic Reviews 2005; Issue 4. Art.No CD003543.

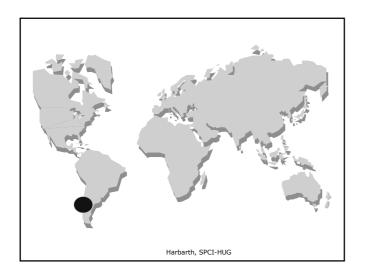

- 51/66 studies showed a significant improvement in at least one outcome
 - Reduction of costs, AMR or HCAI
- Interventions to improve antibiotic prescribing in inpatients likely to be successful
- Absence of good evidence which interventions are most cost-effective in reducing AMR

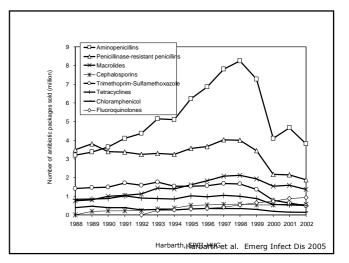

Davey P, et al.Cochrane Datalbaebarshipsteredict.Regiews 2005; Issue 4. Art.No CD003543.



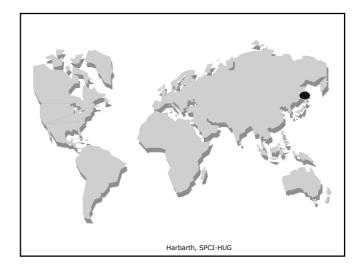




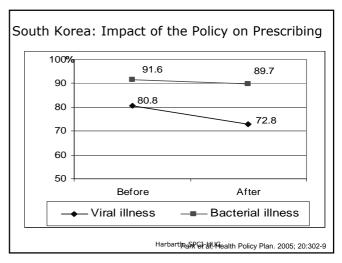


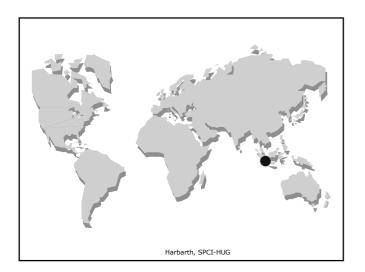


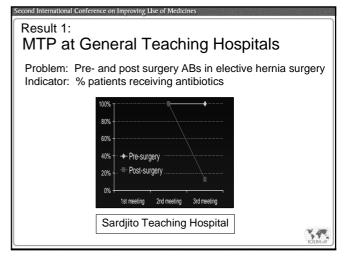
Action plan

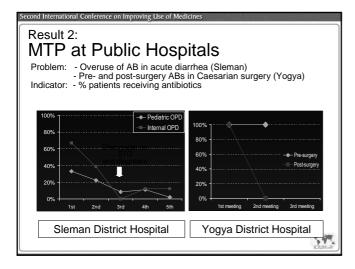

- In 1999, Chile decided an intervention to:
 - educate physicians & public
 - regulate the consumption of antibiotics
 - restrict over-the-counter antibiotic sales

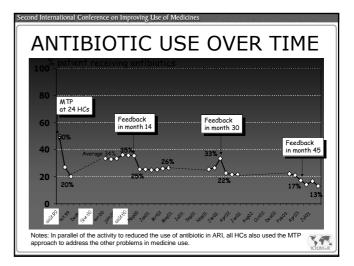
Harbarth, SPCI-HUG






		les of [illion		antik	biotic	s in U	IS\$
Year	1996	1997	1998	1999	2000	2001	2002
USD	37,6	45,8	45,8	38,9	32,1	29,4	26,1
				- 15%	- 30%	- 36%	- 43%

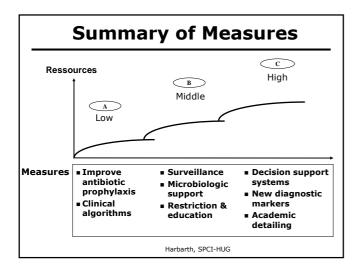


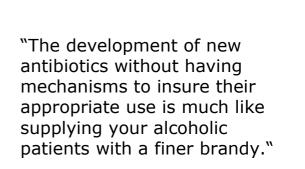


Policy priorities: AB use

Local level

- Improve perioperative prophylaxis
- Promote short-course, high-dose AB therapy
- Decrease diagnostic uncertainty by any type of diagnostic tools or decision support
- Promote local guidelines and drug committees


Harbarth, SPCI-HUG


Policy priorities: AB use

National level

- Create sentinel laboratories for surveillance of antibiotic resistance
- Change consumer expectations
- Implement healthcare regulation for the prudent use of antibiotics
- Control marketing activities of industry

Harbarth, SPCI-HUG

Dennis Maki 1998

Harbarth, SPCI-HUG

