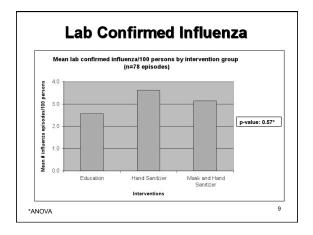
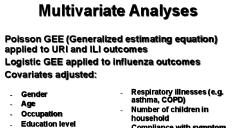
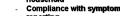

Household Demographics					
Characteristic	Educational Group	Sanitizer Group	Sanitizer + Mask Group	p-value	
Household size					
3 members	10.9% (19/174)	13.0% (22/169)	13.9% (23/166)		
4-5 members	51.1% (89/174)	46.2% (78/169)	45.8% (76/166)	0.83	
>5 members	37.9% (66/174)	40.8% (69/169)	40.4% (67/166)	1	
Demographics of main responders					
Age <40 years	83.3%(145/174)	82.2% (139/169)	82.5% (137/166)	0.96	
Education ≤ high school	46.0% (80/174)	43.2% (73/169)	38.0% (63/166)	0.32	
Born outside the U.S.	90.2% (157/174)	90.5% (153/169)	92.8% (154/166)	0.67	
*chi-square test				3	





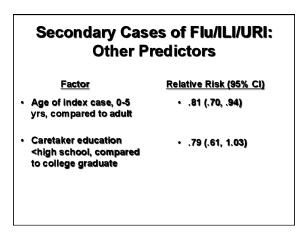

Hosted by Dr. Lynne Sehulster, Centers for Disease Control & Prevention www.webbertraining.com

- reporting
- Frequency of hand washing
- Hours spent outside of home Vaccination status

Place of birth (in/out of U.S.)

Crowding index

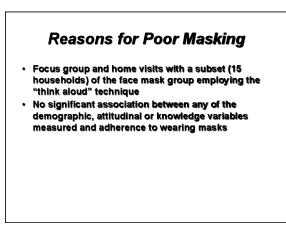
Results


- Individuals born in the U.S. had ~1.5 more URI episodes than those born outside the U.S. (mean: 2.3 and 1.4 episodes/person, p=0.004)
- Younger individuals had higher rates of URI (p<0.001)
- Individuals with respiratory illness had 1.4 times more URI episodes than those without (2.5 and 1.8 episodes/ person, p=0.009)

- The odds of getting influenza were 2.56 times higher for homemakers and those unemployed compared to other professions
- No significant differences among the three groups

NTERVENTION GROUP	Relative Risk (95% Confidence Limits)	P VALUE	
ducation Group	Ref		
land Sanitizer Group	1.01 (.85, 1.21)	p-value: 0.02*	
land Sanitizer + Mask Group	0.82 (.7, .97)		
otal	0.65 (2,130/3,274)		
	0.65 (2,130/3,274) age group, whether or no		

Secondary Cases of Any URI		
AGE RANGE	Secondary Cases// Index Case	P VALUE
0-5 years old	0.57 (910/1,591)	
6-12 years old	0.86 (302/351)	p<0.0001
13+ years old	0.69 (913/1,324)	


Crowding

- Crowding Index: Ratio of the number of people in the household divided by the number of rooms
- Relative Risk: .80 (.72, .89), p< .0001
- Corresponds to the decrease in odds of a secondary case when crowding is increased by 1
- More crowding—fewer URIs!

•Who is wearing the masks?

Frequency	Index Case	<u>Contacta</u>
Most or some of the time	27.9% (19)	25.0% (17)
		17

Reasons for Poor Masking

- Mask group had higher risk perceptions about flu (means: 37.6 and 30.2, p<0.001) and perception of effectiveness of mask wearing (means: 7.8 and 7.3, p=0.043)
- Themes: difficulty for children to wear masks, social acceptability, comfort and fit, level of activity/ physical exertion and mask use, and perception of risk/need for mask.

Knowledge, Attitudes, and Practices

	Educational Group	Sanitizer Group	Mask and Sanitizer Group
Pre	5.12	5.48	5.11
Post	5.75	7. 24	6.40
Diff	0.63	1.76	1.29

Regression analysis comparing difference scores between groups (p<0.001)

20

Antibiotics for Viral Symptoms

- 100 in-depth interviews
- 191 uses of antibiotics were reported.
- 45/191 (23.6%) were self-medicated.
- Self-medication was rare among children (97.6% of reported antibiotic use in participants under 18 was by prescription), but common among participants over 18 where 43/64 (67.2%) of antibiotic use was by self-medication.
- Non-US versions of antibiotics accounted for 25/191 (13.1%)

	of Rap		SIS		
Test		Sens	Spec	PV+	PV-
luick ∨ue	influenza A	0.48	1.00	1.00	0.89
(n=138)	Influenza B	0.22	0.99	0.89	0.78
	Influenza A+B	0.33	0.99	0.95	0.64
3M	Influenza A	0.28	0.96	0.58	0.86
(n=140)	influenza B* Influenza A+B	0.39	0.97	0.83	0.81
	Influenza A+B	0.33	0.92	0.77	0.64

Vaccination

- 66.6% among children <5 years, 55.9% among 5-17 years, 26.2% among 18-49 year, 45.7% among 50-64 year, and 35.0% among adults ≥ 65 years
- Major barrier: belief that influenza vaccination was unnecessary or ineffective

- For children, younger age, having a chronic respiratory condition (e.g. asthma), and greater respondent knowledge of influenza
- For adults, female gender, older age, higher education, greater respondent knowledge of influenza, having been born in the U.S., and having a chronic respiratory condition

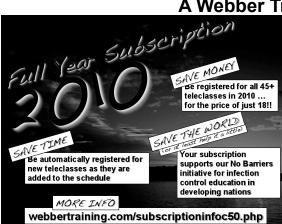
New Findings

- Efficacy of soap and water and alcohol-based handrub preparations against live H1N1 influenza virus on hands of human volunteers
- Marked antiviral activity for both by culture and PCR, but soap and water was superior (p<001), although actual difference was only 1-100 virus copies/µl
- Grayson, et al. 2009; Clin Infec Dis 48:285-91.

Conclusions

- No significant difference between intervention groups in terms of numbers of URI, ILI and flu but secondary attack rate lower in mask group
 Increased KAP scores
- Increased KAP scores
- Increased vaccination among household members
- Low compliance with mask wearing
 NPIs will likely continue to be an important strategy to minimize flu; their efficacy and effectiveness should be further assessed
- · Further evaluations of rapid influenza tests

Contributions to Knowledge


- Targeted education and increased hand hygiene in general were likely important interventions ('controls')
 Mask wearing difficult to enforce
- Screening tests of low sensitivity
- Sources of information vary by ethnic group
- Parents self-medicated with antibiotics for themselves, but not their children

Gaps/Next Steps

- Mask wearing during outbreaks—how frightened do people have to be?
- Effect of targeted education alone
- Factors associated with low sensitivity of rapid tests

THE	NEXT FEW TELECLASSES
25 Feb. 10	Influenza in the Hospital – Who Gets it From Whom Speaker: Dr. Alison McGeer, Mount Sinai Hospital, Toronto
4 Mar. 10	(Novice Teleclass) An Introduction to Infection Prevention and Control in Healthcare Speaker: Gail Bennett, ICP Associates Inc.
11 Mar. 10	(Novice Teleclass) MRSA Prevention Basics Speaker: Dr. Bill Jarvis, Jason & Jarvis Associates
18 Mar. 10	(Novice Teleclass) How to Prepare for CIC Certification Without Becoming Certifiable Speaker: Susan Cooper, Southeastern Ontario Infection Control Network
23 Mar. 10	(Free Teleclass) Voices of CHICA Speaker: Directors & Guests of the Community & Hospital Infection Control Association of Canada
25 Mar. 10	(Novice Teleclass) Infections in the Elderly Speaker: Christine Nutty, Infection Advice Inc.
W	ww.webbertraining.com.schedulep1.php

