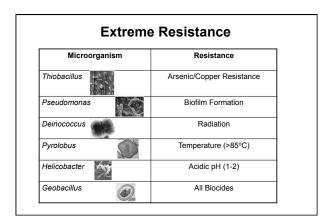
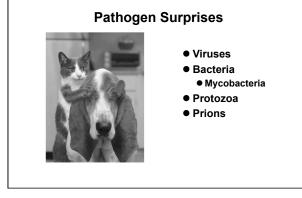
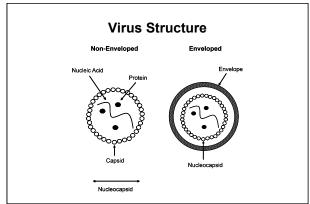
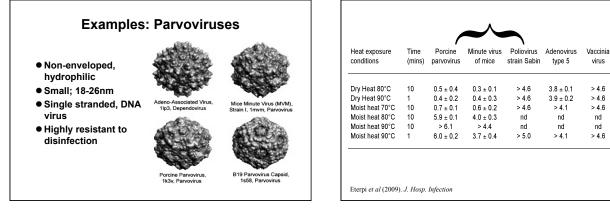

	TABLE	III – LEVEL	S OF DISI	NFECTANT	ACTION	
		BACTERIA		FUNGI ²	VIRU	SES
	Vege- ¹ tative	Tubercle Bacillus	Spores		Lipid and Medium Size	Nonlipid and Small
н	+*	+	+	+	+	+
TERMEDIATE W	*	+ -	-	+	+	+ -
 indicates that a ployed. (1) Commisserily dried chian 	on forms of	bactorial cells, e	.g., staphyloco	ncentrations of accus. (2) Inclu	available disinfecta des usual asexual '	ants are properly 'spores,'' but not




Inactivation Method	Examples
Sterilization	<u>Physical</u> : Steam (e.g., at 121C for 15 mins or 134C for 3 minutes) <u>Chemical</u> : Ethylene oxide or Hydrogen peroxide gas
High-level disinfection	Physical: Hot water (e.g., 93C for 3 minutes), UV light <u>Chemical:</u> Biltaraldehyde, Peracteic acid, Ortho-phathalaldehyde (OPA), sodium hypochlorite (chlorine), hydrogen peroxide
Intermediate-level disinfection	<u>Physical</u> : Hot water (e.g., 90C for 1 minute), UV light <u>Chemical</u> : Phenolics, sodium hypochlorite (chlorine), iodophor
Low-level disinfection	<u>Chemical</u> : Quaternary ammonium compounds (QACs/QUATs), alcohols

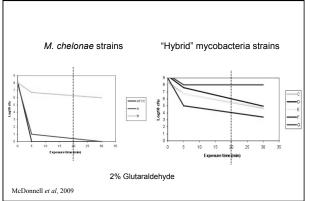




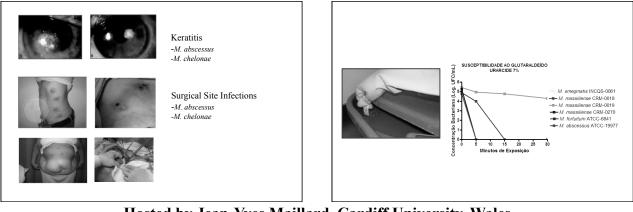
on-E	Envelop	ed Viruses
Year of discovery	viruses discovered as new Virus family (approximate particle size in nm)	and/or emerging since 1968 Associated disease(s)
1968	Picomaviridae (30)	Acute hemorrhagic conjunctivitis; rare cases of paralysis
1970	Picomaviridae (30)	Acute hemorrhagic conjunctivitis
1969	Picomaviridae (30)	Aseptic meningitis; hand-foot-mouth disease
1972	Caliciviridae (30)	Acute gastroenteritis
1972 1973	Caliciviridae (30) Reoviridae (70)	Acute gastroenteritis Acute gastroenteritis
1973	Reoviridae (70)	Acute gastroenteritis
1973 1975	Reoviridae (70) Parvoviridae (25)	Acute gastroenteritis Aplastic anemia
	Year of discovery 1968 1970	menveloped viruses discovered as new Yaar w Viss family (approximate decovery Viss family (approximate performance) 1968 Picomarkidae (30) 1970 Picomarkidae (30)

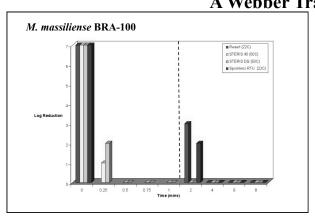
A Webber Training Teleclass

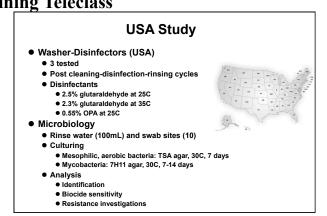
Disinfectant	Contact	Disinfe	ctant Redu	ction (Log ₁₀)
	Time	Parvoviruses	Polio	Adeno	Vaccina
Alcohol (70%)	10 mins	<1	2	>4	>4
QUAT (0.05%)	10 mins	<1	<1	1	3
Bleach (1/10)	10 mins	0.6 to 3	3	>4	>4
2% Glutaraldehyde	20 mins	3 to 4	>4	>4	>4
0.55% OPA	10 mins	3 to 4	>4	>4	>4
0.2% PAA (at 20°C)	10 mins	>4	>4	>4	>4

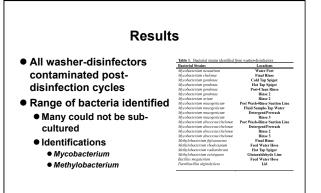

Resistance....is futile?Image: State S

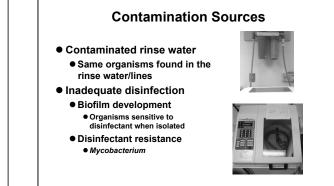
Eterpi et al (2009). J. Hosp. Infection

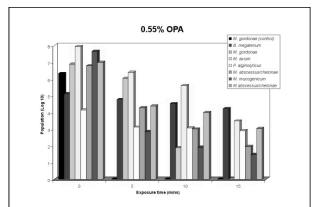


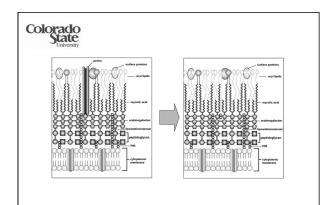

A Webber Training Teleclass

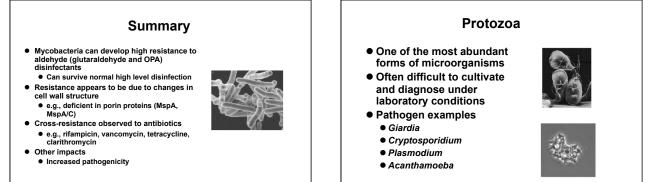

Glutaraldehyde-Resistance **Mycobacterium** • vanKlingeren & Pullen (1993) • Slow to very slow growing bacteria, Repeated isolation from a washer-disinfector acid-fast, generally Gram+, aerobic, Netherlands • Used 2% glutaraldehyde rod-shaped • Isolated Mycobacterium chelonae Typical pathogens Not inactivated at 60min exposure to 2% GTA • M. tuberculosis, M. leprae, M. avium Griffiths et al (1997) Atypical Isolated Mycobacterium chelonae • M. chelonae, M. gordonae, M. fortuitum • From multiple washer-disinfectors in the UK • Commonly found in water Used 2% glutaraldehyde Misidentification and iatrogenic infections Not inactivated at 60min exposure to 2% GTA

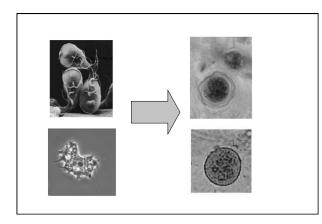


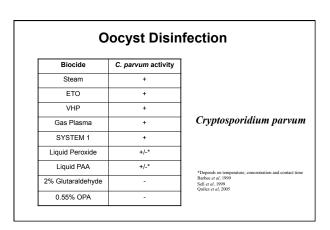

J.Cm. Merchael, 2009 A4.47(7):2149-55. Epub 2009 Apr 29. Epidemic of postsurgical infections caused by Mycobacterium massiliense. Durate RB, Loureno, MC, Fonnesa LB, S.Lake SC, Amoun EBel, J., Rosha L, Coetho F, Yuan-Merc, C, Gomes KB, da Silva, MG, Lorena NG, Fottomba MJ, Fornes RK, Garata SH, da Olivera, GP, Luip Villag EP, Sentada LC, Chebabo A, Marques EA, Tesena LB, Daladonia N, Berna SD, Sampaio JJ, Institudo de Microbiago, Unvestade Ferrete da Dio da Janeiro, Ro da Janeiro, RJ, Prazi. radiant@utili Institudo de Microbiago, Unvestade Ferrete da Dio da Janeiro, Tangi, Control Abdeme August 2008 and July 2007. One hundred minolytogi Shooplatis in the statien da Dio da Janeiro, Tangi, Control Abdeme August 2008 and July 2007. One hundred minolytogi Shooplatis in the statien of Dio da Janeiro, Dio da Janeiro, Brother August 2008 and July 2007. One hundred minolytogi Shooplatis in the statien of Dio da Janeiro, Dio da Valence August 2008 and July 2007. One hundred minolytogi Shooplatis in the statie of Dio da Janeiro, Dio da Valence Moral 2007. One hundred minolytogi Shooplatis in the statien statige and the interface for mice Apatiatis. Most in 1-147 A97 2563 isolates presented a PRA-hystör resitriction patient suggesthere of Microbacterium biolites. Most in 1-147 A97 2563 isolates presented a PRA-hystör sestification and da susceptibility for armistane to interfaceas are inhibited pMIC(200), emicrografio and calciterizatione (MICC), across 4 micrografii. Respective Scientification as K massiliense. Epidemic isolates showed a susceptibility for armistane to interfaceas in (MICC), across 2 micrografii, ediotiti di Microbacteria (MICC), across 4 micrografii. Respective Science isolates are intered to the staties isolates to the respective and the staties isolates are intered massiliense isolates that vere randomis sected in interfaces to indicated by estate for each topologi. Networks 4 future and the staties isolates that encourse and the staties isolates that encourse and the staties isolates that encourse an

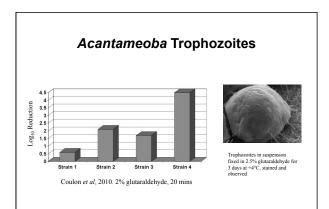


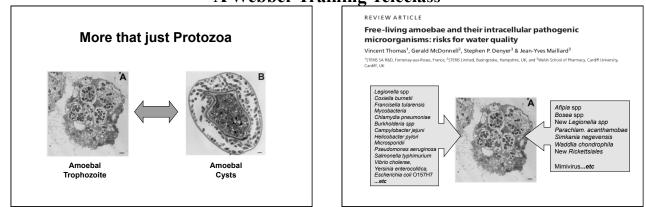


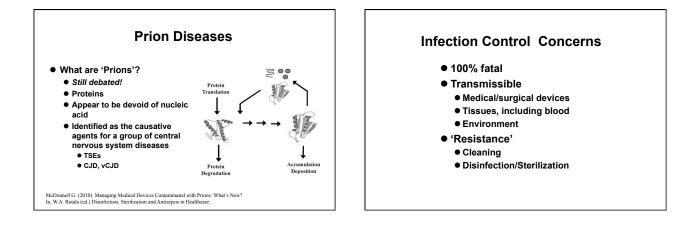


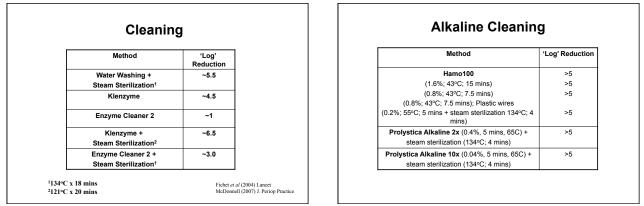




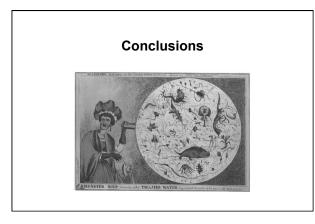

A Webber Training Teleclass







	Acantai	meoba Cyst		
Disinfectant	Contact Time	Disinfectant Reduction (Log ₁₀)		
		Collection Strains	Hospital Isolates	
Hot water (55°C)	10 mins	<1	<1	
Hot water (65°C)	10 mins	>5	>5	
Bleach (1/10)	10 mins	2 to >5	0 to >3.5	
	20 mins	>5	1 to >5	
2% Glutaraldehyde	20 mins	3 to >5	0 to 4	
0.55% OPA	10 mins	2 to 3	1 to 4	
2% Hydrogen Peroxide	10 mins	>5	>5	
0.2% PAA (at 55°C)	10 mins	>5	>5	



Method	Test Parameters	'Log' Reduction
V-Pro 1	1, 3 or 6 pulses at ~1.6mg/L gas under vacuum	>5
Gas Plasma (STERRAD NX)	1 or 2 Advanced Cycles at ~ 8mg/L gas under vacuum	>5
Gas Plasma (STERRAD 100S)	2 or 4 pulses at ~ 6mg/ L gas under vacuum	~1

Disease	Protein	Molecular transmissibility	Infectious life cycle
Prion diseases	PrP ^{sc}	Yes	Yes
Alzheimer's disease	Amyloid-β	Yes	Not shown
Tauopathies	Tau	Yes	Not shown
Parkinson's disease	a-Synuclein	Host-to-graft	Not shown
AA amyloidosis	Amyloid A	Yes	Possible
Huntington's disease	Polyglutamine	Yes	Not shown
Phenotype	Protein	Molecular transmissibility	Infectious life cycle
Suppressed translational termination (yeast)	Sup35	Yes	Not shown
Heterokaryon incompatibility (filamentous fungi)	Het-s	Yes	Not shown
Biofilm promotion (bacteria)	CsgA	Yes	Not shown
monomeric precursor PrP molecular transmissibility also undergo self-sustaini	^c into aggregates. Aggre . Other proteins involve ng aggregation, but non	are caused by PrP ^{Sc} , which sprea gates then multiply by breakage d in disease and in phenotypes o e of these 'prionoid' proteins bel ious life cycle — with the possib	a, a process that is termed f fungi and bacteria, can naves like typical infectious

The A. Denver Russell Memorial Lecture

	COMING SOON
05 May 11	(Free WHO Teleclass) The Importance of Worldwide Hand Hygiene Events and Activities Speaker: Prof. Didier Pittet, University of Geneva Hospitals Sponsored by: WHO Patient Safety Challenge (www.who.int/gpsc/en)
09 May 11	(Free South Pacific Teleclass) Voices of the Australian Infection Control Association Speaker: AICA Board
12 May 11	The Faecal Quandary – Bedpan Management in a Modern Age Speaker: Gertie van Knippenberg-Gordebeke, The Netherlands Sponsored by: MEIKO Maschinenbau GmbH & CO.KG
19 May 11	Human Factors Engineering Applications for Infection Prevention and Control Speaker: Dr. Hugo Sax, University of Geneva Hospitals Sponsored by GOJO (www.gojo.com)
26 May 11	Safe Injection Devices: 10 Years Out Where are the Gaps? Speaker: Ed Krisiunas, WNWN International Inc.
	www.webbertraining.com/schedulep1.php