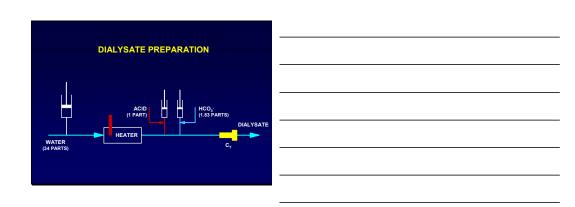
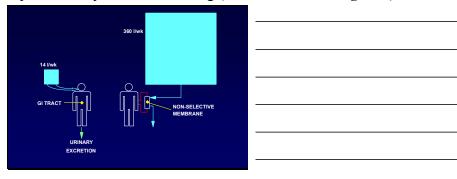

Sponsored By Webber Training (www.webbertraining.com)

Slide 1

Slide 2


Sponsored By Webber Training (www.webbertraining.com)

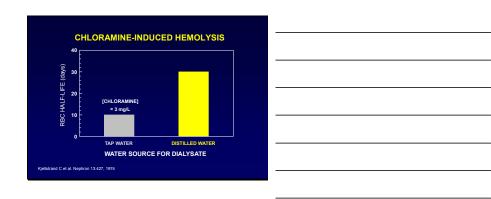
Slide 4

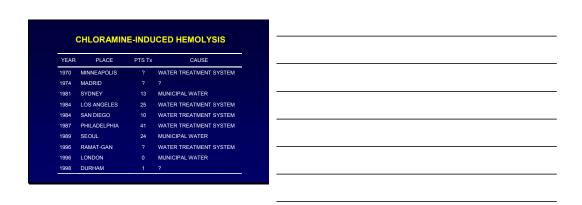

Slide 5

Sponsored By Webber Training (<u>www.webbertraining.com</u>)

Slide 7

Slide 8


TOXIC WATER CONTAMINANTS		
CONTAMINANT	SOURCE	ADVERSE EVENT
ALUMINUM	MUNICIPAL WATER	ENCEPHALOPATHY, BONE DISEASE, ANEMIA
CHLORAMINES	MUNICIPAL WATER	HEMOLYSIS
FLUORIDE	MUNICIPAL WATER	FATAL ARRHYTHMIA, BONE DISEASE (?)
CYANOTOXIN	SOURCE WATER	LIVER FAILURE
NITRATES	SOURCE WATER	ANEMIA
ENDOTOXIN	DIALYSIS UNIT	PYROGENIC REACTIONS, CHRONIC INFLAMMATION
COPPER	DIALYSIS UNIT	HEMOLYSIS, NAUSEA, VOMITING
ZINC	DIALYSIS UNIT	HEMOLYSIS, NAUSEA, VOMITING
CALCIUM, MAGNESIUM	SOURCE WATER, MUNICIPAL WATER	NAUSEA, VOMITING


	.
Progressive Dialysis Encephalopathy From Dialysate Aluminum View V. Roma, ND, Friedda, S. Part, ND, Willow R. Dat, ND	
Arch Intern Mod-Vol 136, Sept 1979 Statyon Encophatopathy-Ploids et al. 1975	
8 CASES OF FATAL DIALYSIS ENCEPHALOPATHY OBSERVED IN 22 MONTHS (38% OF ALL PATIENTS).	
 COINCIDED WITH ADDITION OF ALUMINUM SULFATE AND SODIUM ALUMINATE TO THE CITY WATER RESULTING IN DIALYSATE ALUMINUM CONCENTRATIONS OF 200 - 1000 µg/L (AVERAGE 675 µg/L), AND AN ESTIMATED LOAD OF ALUMINUM WITH EACH DIALYSIS TREATMENT OF 3 - 16 mg. 	
THE OUTBREAK ENDED AFTER INSTALLATION OF DEIONIZER THAT REDUCED DIALYSATE ALUMINUM TO < 1 µg/L.	

Sponsored By Webber Training (www.webbertraining.com)

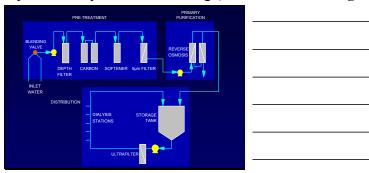
Slide 10

Slide 11

Sponsored By Webber Training (<u>www.webbertraining.com</u>)

Slide 13

SUBSTANCES IN DIALYSATE		SUBSTANCES TOXIC IN DI.	
CALCIUM		ALUMINUM	0.01
MAGNESIUM		CHLORAMINES	0.10
SODIUM	70	FREE CHLORINE	0.5
POTASSIUM		COPPER	0.10
TOXIC SUBSTANCES (SDWA)		FLUORIDE	0.20
ANTIMONY	0.006	NITRATE (as N)	2.0
ARSENIC	0.005	SULFATE	100
BERYLLIUM	0.0004	ZINC	0.10
BARIUM	0.1		
CADMIUM	0.001	MICROBIOLOGICAL CONT.	AMINANTS
CHROMIUM	0.014	BACTERIA	200
LEAD	0.005	ACTION LEVEL	50
MERCURY	0.0002	ENDOTOXIN	2
SELENIUM	0.09	ACTION LEVEL	
SILVER	0.005		
THALIUM	0.002		


Slide 14

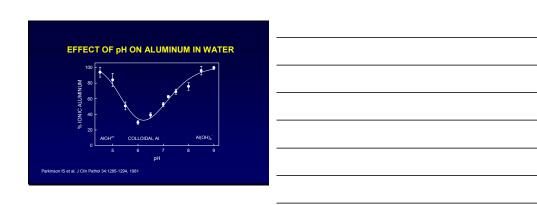
WATER TREATMENT SYSTEM
REQUIRED FOR ALL DIALYSIS FACILITIES
MUST PRODUCE WATER OF APPROPRIATE QUALITY FROM THE WORST CASE FEED WATER
MUST MEET THE PEAK DEMAND FOR WATER (SOME EXCESS CAPACITY IS DESIRABLE)
SHOULD BE DESIGNED FOR EASE OF MAINTENANCE

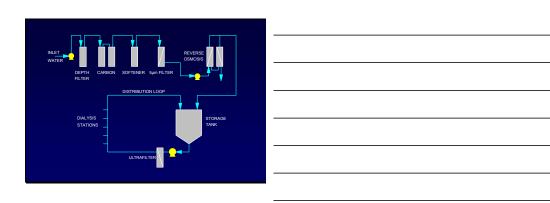
PURIFICATION PROCESSES	
PROCESS	CONTAMINANT
CARBON ADSORPTION	CHLORAMINES, ORGANICS
SOFTENER	CALCIUM
REVERSE OSMOSIS	IONIC CONTAMINANTS, BACTERIA, ENDOTOXIN
DEIONIZATION	IONIC CONTAMINANTS
ULTRAFILTRATION	BACTERIA, ENDOTOXIN

Sponsored By Webber Training (<u>www.webbertraining.com</u>)

Slide 16

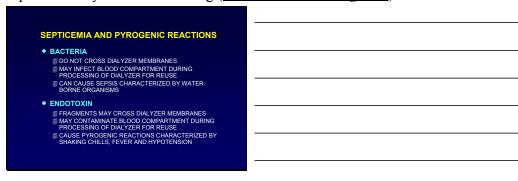
Slide 17

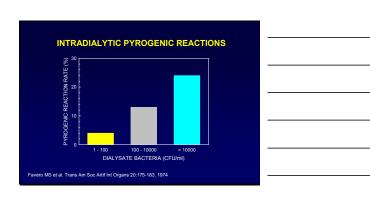

PRE-TREATMENT	
PROTECTS THE PRIMARY PURIFICATION PROCESS	
 DEPTH FILTER REMOVES LARGER PARTICULATES (> 15 μ THAT CAN FOUL DOWN-STREAM PROCESSES 	m)
SOFTENER REMOVES CALCIUM THAT CAN FOUL REVERS OSMOSIS MEMBRANES	E
CARBON REMOVES CHLORINE THAT CAN DEGRADE REVI OSMOSIS MEMBRANES	ERSE
STABLISHES OPTIMUM OPERATING CONDITIONS FOR PRIMARY PURIFICATION PROCESS	t

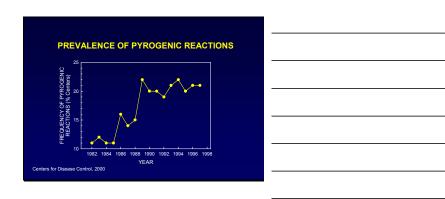

Sponsored By Webber Training (<u>www.webbertraining.com</u>)

Slide 19

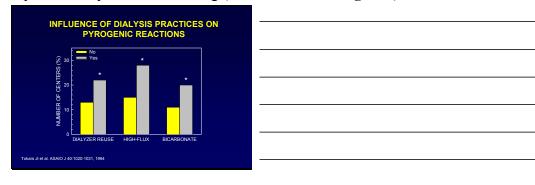
PRIMARY PURIFICATION	
PRIMARY PURIFICATION	
REVERSE OSMOSIS versus ION EXCHANGE	
REVERSE OSMOSIS	
REMOVES A WIDE RANGE OF IONIC AND NON-IONIC CONTAMINANTS (DOES NOT REMOVE CHLORAMINES) PROVIDES A BARRIER AGAINST MICROBIOLOGICAL CONTAMINANTS GENERALLY REQUIRES PRE-TREATMENT OF FEED WATER (CALCIUM, CHLORINE, COLLOIDS) SIGNIFICANT CAPITAL COST, BUT LOW OPERATING COST	
ION EXCHANGE DOES NOT REMOVE NON-IONIC CONTAMINANTS (MAY LIMIT AI REMOVAL) HAS A FINITE CAPACITY PROMOTES BACTERIAL PROLIFERATION RISK OF ACUTE FLUORIBE TOXICITY IF ALLOWED TO EXHAUST LOW CAPITAL COST, BUT SIGNIFICANT OPERATING COST	


Slide 20




Sponsored By Webber Training (www.webbertraining.com)

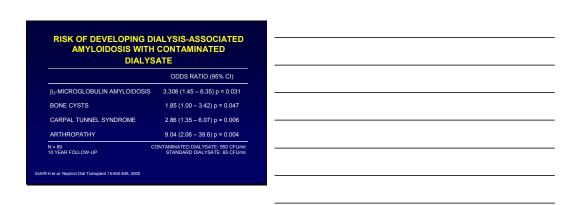
Slide 22

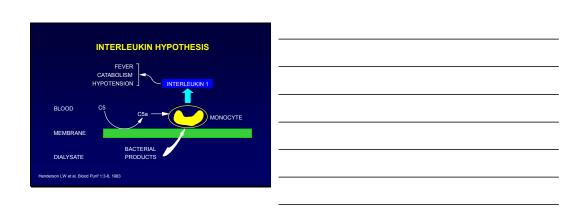

Slide 23

Sponsored By Webber Training (<u>www.webbertraining.com</u>)

Slide 25

Slide 26

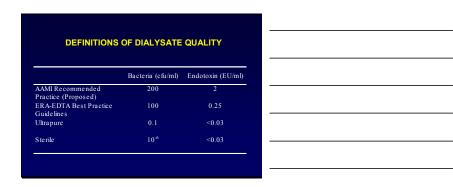

AND PYROGENIC REACTIONS	S			
NCORRECT GERMICIDE CONCENTRATION	5/10			
NAPPROPRIATE GERMICIDE	2/10	 	 	
USE OF TAP WATER TO CLEAN OR RINSE DIALYZERS	3/10			
JSE OF MULTIPLE GERMICIDES	1/10			
USE OF WATER NOT MEETING AAMI STANDARDS	10/10	 	 	

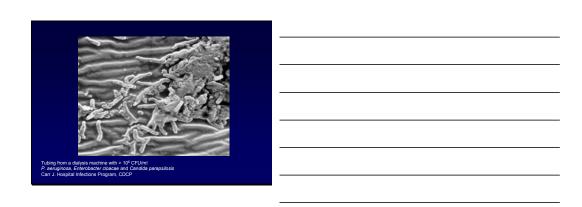

MI	AAMI REQUIREMENTS CROBIOLOGICAL QUALITY OF WATER FOR DIALYSIS
	BACTERIA: < 200 CFU/ml.
	- ACTION LEVEL: 50 CFU/ml
	- ACTION LEVEL: 30 CPUIIII - CULTURING CONDITIONS: TRYPTIC SOY AGAR OR EQUIVALENT FOR 48 hours AT 35 - 37°C
	• ENDOTOXIN: < 2 EU/ml.
	- ACTION LEVEL: 1 EU/ml
	- LIMULUS AMEBOCYTE LYSATE ASSAY

Sponsored By Webber Training (www.webbertraining.com)

Slide 28

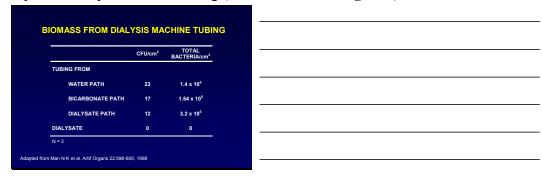
Slide 29

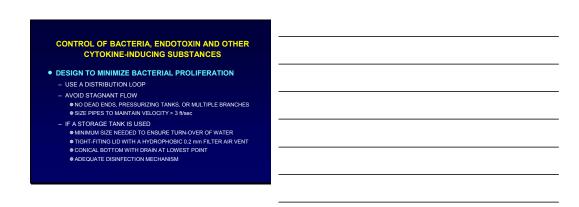

Sponsored By Webber Training (www.webbertraining.com)


Slide 31

POTENTIAL ADVANTAGES OF WATER AND DIALYSATE OF HIGH MICROBIOLOGICAL PURITY

• LESS INFLAMMATORY STIMULUS
• REDUCED INCIDENCE OF P2 MICROGLOBULIN AMYLOID DISEASE
• IMPROVED RESPONSIVENESS TO ERYTHROPOLETIN
• IMPROVED NUTRITIONAL STATUS
• BETTER PRESERVATION OF RESIDUAL RENAL FUNCTION

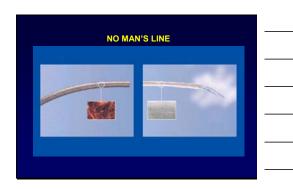

Slide 32



Sponsored By Webber Training (www.webbertraining.com)

Slide 34

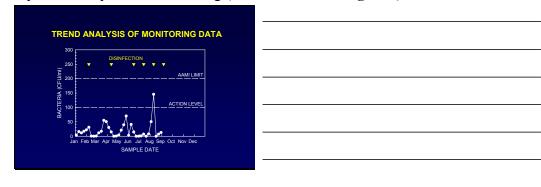
Slide 35


TROL OF BACTERIA, ENDOTOXIN AND OTHER CYTOKINE-INDUCING SUBSTANCES
LUDE BACTERIAL CONTROL DEVICES ILTRAFILTERS, IN-LINE DISINFECTION WITH HOT WATER, OZONE, OR LITRAVIOLET IRRADIATION
INFECT REGULARLY ISINFECTION SCHEDULES SHOULD BE DESIGNED TO REVENT, NOT ELIMINATE, CONTAMINATION WITH BACTERIA ND BIOFILM
NITOR FREQUENTLY ISE SENSITIVE CULTURING METHODS FOR BACTERIA ISE LIMULUS AMEBOCYTE LYSATE ASSAY FOR ENDOTOXIN

Sponsored By Webber Training (www.webbertraining.com)

Slide 37

DISINFECTION DISINFECTION SCHEDULES SHOULD BE DESIGNED TO PREVENT, NOT ELIMINATE, CONTAMINATION WITH BACTERIA AND BIOFILM. DISINFECTION SHOULD INCLUDE THE WATER STORAGE AND DISTRIBUTION SYSTEM, CONCENTRATE PREPARATION AND DISTRIBUTION SYSTEM, AND THE PROPORTIONING SYSTEM. MONITORING WITH CULTURES AND ENDOTOXIN LEVELS IS INTENDED TO VERIFY THE ADEQUACY OF DISINFECTION, NOT INDICATE WHEN DISINFECTION IS NEEDED.


Slide 38



ALTERNATIVES TO SPREAD-PLATE CULTUR	S	
CALIBRATED LOOP		
- STANDARD TECHNIQUE IN CLINICAL LABORATORIES		
 SAMPLE VOLUME IS TOO SMALL FOR REQUIRED SENSITIVITY SPECIFICALLY PROHIBITED FOR DIALYSIS APPLICATIONS 		
PADDLES		
- CONVENIENT FOR ON-SITE TESTING		
- REQUIRE A MAGNIFIER AND LIGHT-SOURCE FOR ACCURATE		
ENUMERATION OF COLONIES		
 MAY GIVE AN APPARENT FALSE NEGATIVE WITH HEAVILY CONTAMINATED SAMPLES 		
MEMBRANE FILTRATION		
- VERY SENSITIVE		
- REQUIRES FILTRATION SYSTEM AND LARGE SAMPLE VOLUMES		

Sponsored By Webber Training (www.webbertraining.com)

Slide 40

