

Disclosure

Consultant to: APIC, Bard, BD, J&J, Medscape, Teleflex, and CDC

Purpose

- Discuss the expanding horizon of infection prevention and control—Zero Tolerance.
- Provide an overview of selected healthcareassociated infections (HAIs), most of which are associated with medical devices.
- Illustrate how these HAIs cause morbidity and mortality.
- Illustrate how applying current infection prevention and control measures together with proper use of medical technology in bundles can markedly reduce these adverse patient events.

Urinary Tract Infections (UTIs)

Background

- Urinary tract infections (UTIs) often are the most common site of HAI.
- · Most UTIs (80%) are associated with urinary catheterization.
- · Approximately 25% of inpatients are catheterized.
- Each UTI:
 - Adds ~1 day of extra hospitalization
 - Costs ~\$680.00

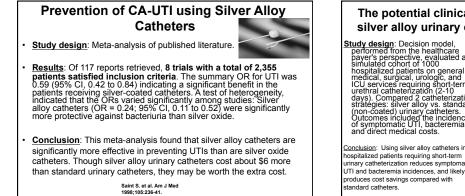
Overall, UTIs cause or contribute to ~7,450 deaths in U.S. hospitals each year.

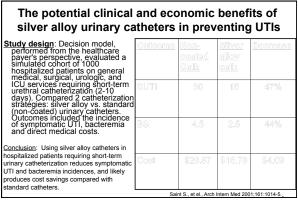
UTI Prevention Rule: Make Sure the Patient Really Needs the Catheter

Appropriate indications

- Bladder outlet obstruction
- · Incontinence and sacral wound
- Urine output monitored
- · Patient's request (end-of-life)
- During or just after surgery
 (Wong and Hooton CDC 1983)

Why are Catheters Used Inappropriately?


- Perhaps physicians "forget" that their patient has a urinary catheter.
- Study to determine the extent to which physicians are aware which of their inpatients have urinary catheters.
- Surveyed 56 medical teams at 4 sites; 256 providers completed the survey (response rate = 89%)
 Saint S et al. Am J Med 2000


Aedical Student		8-32%
	22%	
	28%	20-38%
		26-45%

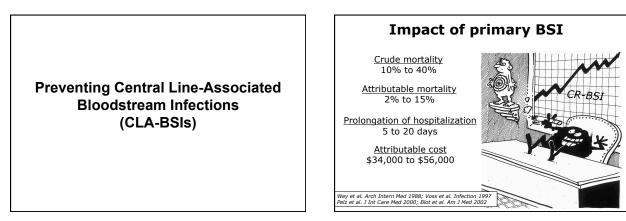
-	
Date:	//
This pa	tient has had an indwelling urethral catheter since / /
	indicate below EITHER (1) that the catheter should be removed OR (2) that the catheter be retained. If the catheter should be retained, please state ALL of the reasons that apply.
	Please discontinue indwelling urethral catheter; OR
	Please <u>continue</u> indivelling urethral catheter because patient requires indivelling catheterization for the following reasons (please check all that apply):
	Urinary retention
	Very close monitoring of urine output and patient unable to use urinal or bedpan
	Open wound in sacral or perineal area and patient has urinary incontinence
	Patient too ill or fatigued to use any other type of urinary collection strategy
	Patient had recent surgery
	Management of urinary incontinence on patient's request
	Other - please specify:

National Survey of UTI Prevention Practices

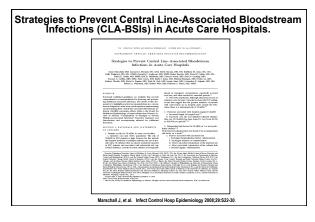
Study design:	Pradica	Per Cent Implementing
Survey of non- federal hospitals	Monitor who is eatheterized	44%
with ICUs and	Monitor estituter duration	38%
>50 beds (N=600) and VA	Use antimicrobial/antiseptic cathetera	30%
hospitals	Use condom estheters	14]%
(N=119).	Use catheter reminders	8%
 <u>Results</u>: Response rate = 72%. 	Non-fed va. fad uae soliaeptic esibelare (30% va. 14%; P=0.001)	
	Saint S., et al., Clin Infect Dis. 2	2008:46:243-50.

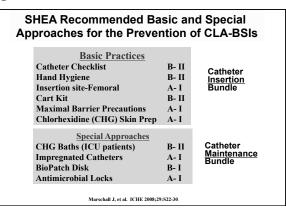
Silver Catheters: What Is The Evidence Base?

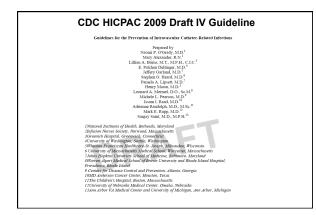
- To date, 11 comparative studies of and two meta-analyses of silver (the majority being the silver alloy urinary catheter) vs. non-coated Foley catheters have been conducted.
- In every comparative trial, the number of CA-UTIs has been decreased in the impregnated silver-coated catheter group compared to the non-coated catheter group.
- In some of these studies, the number of patients included has been small and thus a statistical significant decrease in CA-UTIs has not been documented (insufficient power). Nevertheless, in every study, a decrease in the rate of CA-UTI or CA-bacteruria has been documented.
- In both meta-analyses, combining a variety of studies to increase the power to detect a difference in efficacy of silver-coated catheters, the authors have concluded that the silver-alloy coated catheter is associated with a significant reduction in CA-UT and CA-bacteruria.
- These data strongly support that silver alloy hydrogel impregnated urinary catheters can decrease the risk of CA-UTI or CA-bacteruria compared to non-coated catheters in patients who are to be catheterized for 3-7 days.


Study	Antiseptic	Standard n/N	Relative Risk (Fixed) 95% Ci	Weght (%)	Relative Risk (Fixed) 95% CI
01 Silver coude versus sta Johoson 1993	ndard 19/207	28/275	-	22.4	0 90 10 52, 1 57 1
Riley 1995	85 / 745	73/504	-	77.0	0 88 [0 66, 1 19]
r Takeuchi 1993	20/20	11/11	-	00	Not estimable
Subrotal (95% CI) Teat for heterogeneity ches Teat for overall effect=0 92	130/678 quare=0.00 df=1 p=0 6 2 p=0 4	112/850	•	100.0	0 89 [0 68, 1.16]
02 Silver alloy versus star		25/00	_		0 24 (0.00, 0 73)
Lecherg 1990a	3/30	23/60		22.0	0.27 [0.12, 0.02]
Ledberg 1090b		17/60		18.5	0 35 [0.15, 0 82]
Lundeberg 1985	6/51	17/01		185	
Tubon 2000 Verleyen 1990b	7/90	31/101		29.6	0 85 [0.34, 2.14] 0 23 (0 16, 0 68 1
Ceneyen 1990b		317101		100	0.33 [0.10, 0.08]
Subtotal (95% CI) Test for heterogeneity oh-s Test for overall effect=535		105/381 1561	+	100 0	0 78 [0.24, 0 62]
03 Silver alloy versus star Tobon 2000	vdard (>1 week) 9 / 90	13/109	_	18.4	9,94 [0,38, 1,97]
Verleven 1999a	0/12	8/15			0 94 [0 45, 1 96]
Verleyen 1000b	28/70	80/101		738	0.60 [0 43, 0 94]
Subtotal (95% CI) Test for heterogeneity ches Test for overall effect=2.70		81/225 112	+	100.0	0 67 [0 50,0 90]

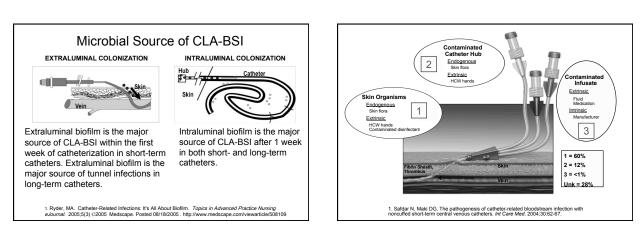
Review Types of utel Companion. D1 ANTISEPT	hal catheters for mana	gement of short-to S STANDARD CA			201 1110	
Study	Säver alloy n/N	Standard n/N	Relative Risk 95% C		Weight (%)	Relative Risk (Fixed) 95% Cl
01 Silver alloy versus star Liedberg 1990a	ndard 3738	25/60			77	8 24 [0.08, 0.73]
Ledberg 1990b	8/80	22/60			10.1	0.27 [0.12, 0.62]
Lundeberg 1986	8/51	17/51			7.8	0.35 [0 15, 0 82]
Maki 1998	64/407	94/443			41.4	0 74 [0 50, 0,99]
Thibon 2000	9/90	13/100			5.4	D 84 [0.38, 1.87]
Verleyen 1999a	6/12	8/15	+		3.3	0 94 [0 45, 1 98]
Varleyen 1999b	28/70	60 / 10 1	+		24.2	0 60 [0.43, 0 84]
Subtotal (95% CI) Test for heterogenety ch-s Test for overall effect=6 2		239/839 0088	•		100.0	Ø 60 [0 50, 0.73]
		ji ji		10 10		


CA-UTI Prevention Bundle


- Use urethral catheters only when necessary.
- Catheter inserters should be educated and competent.
- Use aseptic technique for catheter insertion and manipulation.
- · Use a closed drainage system.
- Require a urinary catheter insertion indication/order and consider using an administrative urinary catheter "stop order" to limit inappropriate catheterization.
- Consider silver catheters in high-risk patients who require catheterization for 2-10 days.


PREVENTION POSSIBILITY: 20%-70%

Hosted by Martin Kiernan martin@webbertraining.com www.webbertraining.com



CDC/HICPAC Draft Guidelines for the Prevention of Intravascular Catheter-Related Infections-2009

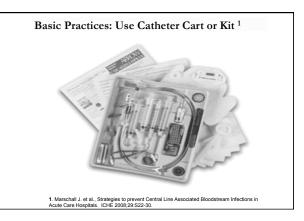
<u>Major areas of emphasis include</u>: 1) Educating and training healthcare personnel who insert and maintain

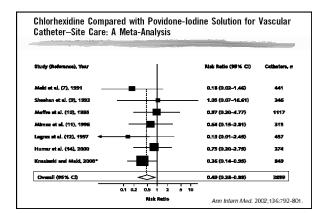
- catheters;
- 2) Using maximal sterile barrier precautions during CVC;
- Using a ≥0.5% chlorhexidine (CHG)-based preparation for skin antisepsis:
- 4) Avoiding routine replacement of central venous catheters;
- 5) Using antiseptic/antibiotic impregnated short-term central venous catheters;
- 6) Using CHG-impregnated sponge dressings; and
- 6) Emphasize performance improvement by implementing bundled strategies, documenting and reporting rates of compliance rates with all components of the bundle as benchmarks for quality assurance and performance improvement. http://www.cdc.gov/ncpdcid/pdf/Draft_BSI_guideline_v15_2FR.pdf

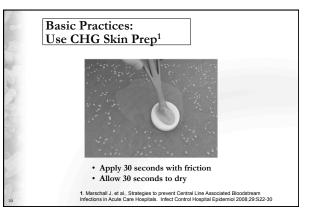
Hosted by Martin Kiernan martin@webbertraining.com www.webbertraining.com

Evidence-Based Measures to Decrease the Risk of Infection During <u>Insertion</u> of the Intravascular Catheter: <u>INSERTION BUNDLE</u>

- · Insert a catheter only when clinically essential.
- Use a catheter insertion check-list.
- Use a catheter insertion cart or kit.
- Hand hygiene.
- Chlorhexidine-alcohol skin antisepsis.
- · Maximum barrier precautions.
- Select the correct catheter and insert in the correct location (Vessel Preservation; avoid femoral).

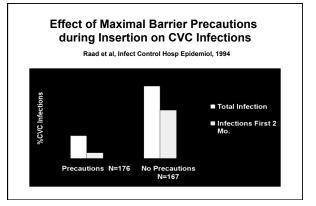

	SHEA/IDSA Basic Practices Before Insertion	Practice Red	commendatio	ons
	Action	Recommendation	Full Description	Implemented?
	Educate healthcare personnel	A-II	Educate healthcare personnel Instituent in the insertion, care, and assistemation of CACs about CLARSI presention.	Yes_ No_
	At insertion			
	Action	Recommendation	Full Description	Implemented?
	Use a checklist	B-81	Use a catheter checklist to nonse adherence to infection provestion practices at the time of CVC Insertion.	Yes_ No_
	Perform hand hygiene	D-81	Perform hand hygene larfore catherer insertion or manipulation. Avoid using the ferrorad usin	Yes_ No_
Basic Practices:	Avoid using femoral vein	A-1	for central veneus access in adult patients	Yes_ No_
	Use catheter cart or kit	B-81	Use an all inclusive currenter care or WL	Yes_ No_
Use a	Use maximal barrier precautions	A-1	Use maximal clerifie barrier precurities during CVC insertion.	Yes_ No_
	Use CHG skin prep	A-1	Use a chiefeedire hased antiagtic for use preparation in patients older than 2 meeths of ope	Yes_ No_
Checklist ¹	After Insertion			
Checkhot	Action	Recommendation	Full Description	Implemented?
	Disinfect hubs, connectors, ports	D-II	Disletions national balas, randomissi convectors, and injection parts helien accessing the catherin	Yes_ No_
	Remove nonessential catheters	A-II	Remove minescential catheters	Yes_ No_
	Change transparent dressing every 5-7 days	A-1	Per monitorination (CNS) in artists and additionation, change taxeparent develops and perform site gave with a differentiation of the anti-performance of the ferrometal (II for a direction) is valid between the formation gave developed (II for a direction) is valid developed). If the direction is period, tootes (I) if the direction is period, tootes (I) if the direction is period, tootes (I) of the line size is period.	Yes_ No_
1.Marschall J. et al.,	Replace administration sets every 96 hours	A-8	Replace edministration sets not used for blood predicts or lipids at intervals not longer than 95 hours.	Yes_ No_
Strategies to prevent Central	Perform CLABSI surveillance	8-11	Polomisarvollance for QUABS	Yes_ No_
Line Associated Bloodstream	Use antimicrobial ointments on diabab catheters	A-1	Use antimicrobial ointmonts for newodraryse carbotar intertion sites.	Yes_ No_
Infections in Acute Care	If CLARSI Rates	Are Higher Tha	n Institutional G	oals
	Special approaches for t			
Hospitals. Infect Control	Action	Recommendation	Full Description	Implemented?
Hospital Epidemiol	Bathe ICU patient with CHG	D-11	Bar to KU patients other than 2 membro of age with a driamentene preparation on a daily taxes.	Yes_ No_
2008;29:S22-30	Use coated catheters	A-1	Use artistypic or antinicubial- troprogramed CVCs for adult partners,	Yes_ No_
	Use CHG sponge dressing*	B-1	Use chief-bearding containing spange densings for CVEs in paragraph of the start 2 months of ane	Yes_ No_
	Use antimicrobial locks	A-1	Use antimicratial lasts for CVCs	Yes_ No_




Developing a Physician Champion—Prevention Should Be The Focus of Clinicians, Not Just Infection Control Personnel.

CENTRAL LINE INSERTION BUNDLE COMPLIANCE By Doctors

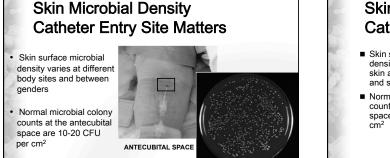
A		16 (76%)	17 (81%)	6 (29%)	19 (91%)	6 (29%)
		10 (10/1)		e (28%)		• (20%)
8	13	13 (100%)	13 (100%)	2 (15%)	5 (69%)	6 (46%)
с		3 (38%)	7 (83%)		7 (88%)	1 (22%)
0	6	6 (100%)	5 (83%)		4 (67%)	4 (67%)
E	4	4 (100%)	3 (75%)		3 (75%)	2 (58%)
r		2 (67%)	3 (100%)		1 (33%)	2 (67%)



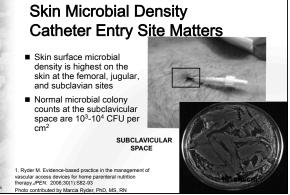
Hosted by Martin Kiernan martin@webbertraining.com www.webbertraining.com

Evidence-Based Measures to Decrease the Risk of Infection During <u>Maintenance</u> of the Intravascular Catheter

- Minimize catheter site skin bioburden.
- · Device selection
- Aseptic manipulation of catheter connectors---Scrub the hub!
- Antibiotic/antiseptic lock
- · Antimicrobial/antiseptic-impregnated-catheters


Microbiology of the Skin 80% of the resident bacteria exist within the first 5 layers of the stratum corneum

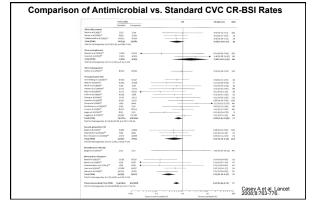
 20% are found in biofilms within hair follicles and


sebaceous glands

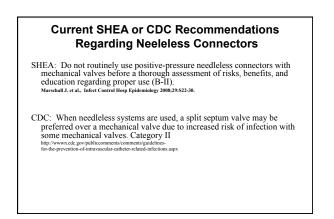
 Complete recolonization of the epidermis can occur within 18 hours of antiseptic application

> Ryder, MA. Catheter-Related Infections: It's All About Biofilm. *Topics in Advanced Practice Nursing eJournal*. 2005;5(3) Posted 08/18/2005. http://www.medscape.com/viewarticle/508109

 Ryder M. Evidence-based practice in the management of vascular access devices for home parenteral nutrition therapy. JPEN. 2006;30(1):S82-93.
 Photo contributed by Marcia Ryder PhD MS RN


Hosted by Martin Kiernan martin@webbertraining.com www.webbertraining.com

©ETHICON. Inc 2005



		Dressing					Dressing Change Interval					
	Incidence, No./1000 Catheter-Days ITT Analysis		Per-Protocol Analysis ^a		Incidence, No./1000 Catheter-Days		ITT Analysis		Per-Protocol Analysis ^a			
Variable	Control (n = 1825)	CHGIS (n = 1953)	HR (95% CI)	P Value	HR (95% CI)	P Value	3 d (n = 1815)	7 d (n = 1963)	HR (95% CI)	P Value	HR (95% CI)	P Value
Catheter colonization >10 CFUs/plate	15.8	6.3	0.36 (0.28-0.46)	<.001	0.35 (0.27-0.45)	<.001	10.4	11.0	0.99 (0.77-1.28)	.95	0.99 (0.77-1.28)	.95
Catheter-related bloodstream infection	1.3	0.4	0.24 (0.09-0.65)	.005	0.24 (0.09-0.63)	.004	0.7	0.9	1.26 (0.47-3.34)	.65	1.28 (0.48-3.40)	.62
Major catheter-related infection	1.4	0.6	0.39 (0.16-0.93)	.03	0.38 (0.16-0.92)	.08	0.9	1.1	1.16 (0.50-2.69)	.74	1.18 (0.51-2.73)	.70

	CVCs (HMR) Standard Contractor	04	08 (95% O)	
Where after coasted	Andre Conferen			
Baltert d (1999)	700 504		3.1317-44-4.052	
Goldschweidt et an (1999) P*	30/313 54/100		1031242-170	
Total (PDM)	25/305 96/314		121034-1273	
Text for heterogeneity: Qu6-85	(2-89), p=0-65; P=0%			
Silver instructoretic				
Tend For Twiter operating: Q+3.99	(1.0%). p=0.16, P=0%.	-		
Silver imprograted				
Stoker at al-(2002)*	14117 10700		0101224-1499	
			125.0278-1400	
		-	1070070-050	
Test for heterogeneity: 0-1-99	(1-0%) p=0-15; P=0%			
First annuation/201				
Tennenberg et al (1957)*	30145 8/327		8251014-0520	
Make of all (1997)**	40730 23/208		4 10 ID ID -0 RD	
Marit et al (1990)**	11/39 2/26		2-62 10 22-3 7%	
			9 29 10 29 0 575	
Report of al (1993) ¹⁰	Barry 66/151		0.6739-09-0.575	
	29/202 13/161			
Owner# #1(2006)**			5 30 (0 48 - 2 52)	
Creasi an all (19)9511"			0.841035-2.025	
Test for heterogeneity Q+15.8	(1246).p=140.P=30.5%	-		
Second-generation/CSS				
	19/292 33/38/4		0570734-0-80	
Outwallorf et al (2005) ²⁸	38/54 89/90		0 31 (8 25-0 62)	
Brus Buildon et al (2004) ⁴⁶	23/105 2/188	and the second design of the s	0.2930.54-0.500	
Turbal (REMO	333/62 5///62	-	0.2312-0.501	
Test for heterogeneity Q-3-89	(24%, p=0.2%, P=62.8%			
Boraskonium Printe				
Designs with all (2000) ¹⁰	4/25 4/25		5 60 20 22 4 405	
Monochine (Tamelein				
Road et al (20)(37) ²⁴	-36/135 11/139		0.2010.15-0.583	
Munik of M (19990 ^{Pr}			0.11(0.13-1.00)	
Characherians et al (2003) ⁴⁴			0.741232-1.689	
Leon et al (2004/14	455300 201887		038022-0640	
Yorul (Infine)	solvers elivers	+	0.2220-22-0.552	
Test for heterogeneity: Q-3.24	3 49, p=0.36, P=38.38			
Effectivity missessede				
Yuosi et.# (2004)**	38/585 6438		0140409-0-223	
Total antimized of CICs (NO	TRACING CONTRACTO	-	0.54 (0.43-0.97)	
Text for heterogeneity Q-8s r	115 #3 p+1.00.7-57.9%	-		
			C	asey A et al. Lanc
		01 10 Terrora antimicrobial (M) Ferrora a		

<u>Author</u>	<u>SS Used</u>	<u>88-B81</u> Refe*	<u>NV Used</u>	<u>KV-BSI</u> Rata*	<u>P-</u> valua
Salgado ¹	Interlink	1.79	Smartalte	5.41	<0.001
Rupp ²	Interlink	3.87	SmartSite Plus	10.43	<0.001
Fields ^a	Interlink	2.80	Clave/CLC2000	5.80	0.031
Jarvis 4	Interink/ neodle	6.15	Ulirasite, Clearlink, Smartaite	9.49	<0.001
Toscano ³	Needles	0.70	Clava	2.10	0.01

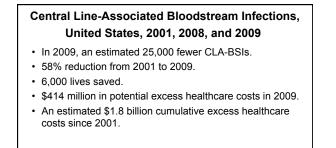
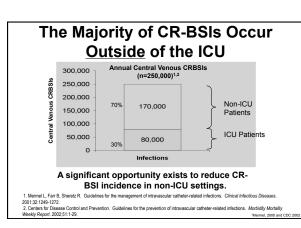

Keystone Project
 <u>Study design</u>: Intervention cohort study in 108 Michigan Intensive care units (ICUs) over 18 months. Comparison of CVC-BSI rates before, during, and after intervention.
 <u>Results</u>: 103 ICUs. 1,981 months of ICU data and 375,757 catheter-days. Median CVC-BSI Rates per 1,000 CVC-days
Essaine <u>2 Nonths</u> <u>LRR</u> <u>13-13 Nonths</u> <u>LRR</u>
2.7 0 0.62 1.4 0.34
Conclusion: An evidence-based intervention resulted in a large and sustainable decrease (up to 66%) in CVC-BSI rates that was maintained for 18 months.

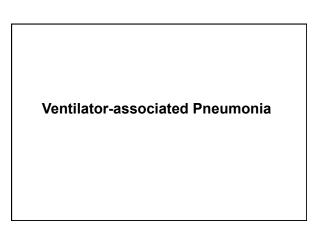
TABLE 2. Estimated annual number of central line–associated blood stream infections (CLABSIs), by health-care setting and year — United States, 2001, 2008, and 2009

Health-care setting	Year	No. of infections (upper and lower bound of sensitivity analysis)
Intensive-care units	2001	43,000 (27,000-67,000)
	2009	18,000 (12,000–28,000)
Inpatient wards	2009	23,000 (15,000-37,000)
Outpatient hemodialysis*	2008	37,000 (23,000-57,000)

National Healthcare Safety Network.

CDC MMWR 2011:60:1-6.




CDC MMWR 2011-60-1-6

Catheter checklist Hand hygiene Insertion site-Femoral Cart kit Maximal barrier precautions Chlorhexidine (CHG) skin prep <u>Maintenance Bundle</u> Select the safest needleless connector Scrub the hub (≥15 secs with CHG-alcohol or alcohol) Antiseptic or antimicrobial-impregnated catheters CHG-impregnated sponge (BioPatch) Antimicrobial or antiseptic locks CHG Baths (ICU patients) Prevention Possibility: 70%-100%

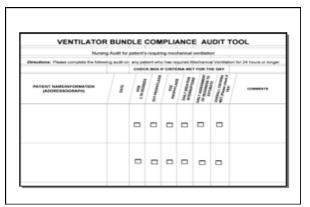
CLA-BSI Prevention Insertion and Maintenance Bundles

Insertion Bundle

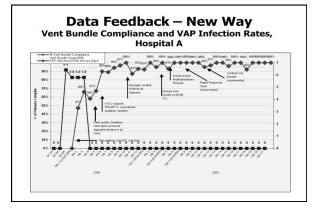
Ventilator-associated Pneumonia (VAP) Background

- VAP is the most common healthcare-associated infection in critical care patients.
- Risk factors for VAP include age, chronic obstructive lung disease, trauma, gastric aspiration, duration ventilation, elevated gastric pH, etc.
- 10-20% of patients ventilated for >48 hrs will develop VAP.

Impact of VAP


- · Attributable extra ICU stay of 22 days.
- ICU patients developing VAP are twice as likely to die.
- Crude mortality rate 60%.
- Attributable mortality 27%-43%.
- Attributable cost \$15,986

Safdar N et al CCM 2005;33:2184; Patel PJ et al SRCCM 2002;23:415-425; Hugonnet S et al ICHE 2004;25:1090-1096; Warren DK et al CCM 2003;31:1582-1583.


Ventilator Management Changes—The Bundle.

- Chlorhexadine on the unit
- Oral care product
- Sedation reduction vs.
 Sedation vacation
- Using deep vein thrombosis (DVT) and peptic ulcer disease (PUD) prophylaxis prevent risk for vent patients
- Using ventilator weaning protocol
 Continuous aspiration of subglottic secretions

Oral Decontamination with CHG

- Koeman M et al. (AJRCCM 2006;173:1348-55): Randomized double blind placebo controlled trial (RCT): placebo vs. 2% CHG vs. 2% CHG/2% Colistin (CHG/COL) in patients ventilated for >48 hours. <u>Results</u>: The risk of VAP was decreased 65% with CHG (p=0.012) and decreased 55% for CHG/COL (p=0.003).
- Tantipong H et al. (ICHE 2008;29:131-6): RCT (2%CHG vs. Saline, 4 times per day). <u>Results</u>: VAP rate: CHG: 7 vs. Saline 21; p=.04.
- Sona CS et al. (JICM 2009;24:54-62): Pre- vs. Postintervention observational study. Intervention: cleansing teeth with sodium monoflurophosphate paste and brush, rinse with water, then application of 0.12% CHG solution twice daily. <u>Results</u>: Pre-intervention: VAP rate per 1,000 vent-days: 5.2 vs. 2.4 in intervention period; p=0.04.

Hosted by Martin Kiernan martin@webbertraining.com www.webbertraining.com

Decreasing Ventilator-Associated Pneumonia in a Trauma Intensive Care Unit

- Study design: Prospective intervention. Pre-intervention VAP rates at the CDC's NNIS 90th percentile (22.3-32.7 VAP per 1000 ventilator-days). VAP bundle implemented with audits and weekly feedback to clinicians.
- Results: From November 2002 to June 2003, VAP stayed between 0 and 12.8 VAP per ventilator-days. The average cost of VAP was \$50,000 per episode.

Cocanour CS et al. J Trauma 2006;61:122-9

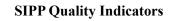
The Importance of Nursing Education

- Study design: European intensive care unit (ICU) nurses were tested on knowledge of evidence-based guidelines for preventing VAP. A validated multiple-choice questionnaire was distributed in 22 European countries from October 2006--March 2007.
- Results: There were 3329 questionnaires (response rate 69.1%). The average score was 45.1%.
- 55% knew that the oral route is recommended for intubation; - 35% knew that ventilator circuits should be changed for each new patient;
- 38% knew that heat and moisture exchangers were the recommended humidifier type, but only 21% knew that these should be changed once weekly;
- 46% recommended closed suctioning systems; 18% knew that these must be changed for each new patient;
 51% recognized that subglottic secretion drainage reduced VAP;
- 57% recognized that kinetic beds reduce VAP incidence; and
- 85% knew that semi-recumbent positioning prevents VAP. Labeau S. et al. J Hosp Infect. 2008;70:180-5.

Prevention of VAP

- Standard infection control practices (e.g., hand hygiene).
- Minimizing duration/intensity of sedation and device exposure.
- · Positioning patient in semi-recumbent position (40 degree)
- · Appropriate use of enteral feeding, antibiotics and selected medical devices.
- · Use of sterile water for irrigation.
- · Closed suction system.
- · Mouth care-chlorhexidine mouth/teeth cleaning.

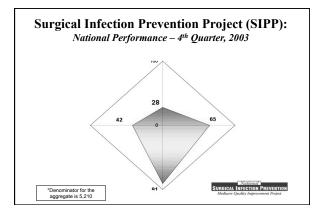
Safdar N et al CCM 2005;33:2184; Patel PJ et al SRCCM 2002;23:415-425; Hugonnet S et al ICHE 2004;25:1000-1006


Prevention Possibility: 50%-100%

Surgical Site Infections

Major Surgery Antimicrobial Prophylaxis: Baseline Results from the National Surgical Infection Prevention Project (SIPP)

- · Design: National retrospective cohort study (medical record review).
- · Study population:
 - 2,965 hospitals
 - systematic random sample
 - 34,133 Medicare inpatients undergoing cardiac, vascular, colorectal, hip/knee and hysterectomy procedures from January 1-November 30, 2001.


Bratzler D et al. Arch Surg 2005;140:1066-7

- Antimicrobial Prophylaxis (AP)
 - Correct AP
 - AP given at the correct time (within 1 hour)*
 - AP stopped correctly

*Because of the longer required infusion times, vancomycin or fluoroquinolones, when indicated for beta-lactam allergy, may be started within 2 hours before the incision.

National SURGICAL INFECTION PREVEN

Preventing Surgical Site Infections in Nasal Carriers of Staphylococcus aureus
 Background: Nasal carriers of Staphylococcus aureus are at increased risk for healthcare–associated infections with this organism. Decolonization of nasal and extra-nasal sites on hospital admission may reduce this risk.
 Methods: A randomized, double-blind, placebo-controlled, multi-center trial at 3 university and 2 general hospitals in Holland from October 2005 through June 2007 assessing whether rapid identification of S. aureus nasal carriers by real-time polymerase-chain-reaction (PCR) assay, followed by treatment with mupirocin nasal ointment and chlorhexidine soap, reduces the risk of hospital-associated S. aureus infection.

Preventing Surgical Site Infections in Nasal Carriers of Staphylococcus aureus

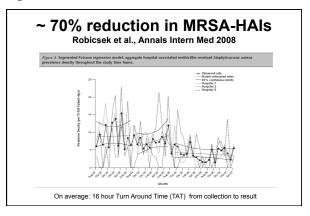
- Results: Of 6771 patients screened on admission, 1270 nasal swabs from 1251 (18.5%) patients were S. aureus-positive.
 - 917 patients enrolled in the intention-to-treat analysis, of whom 808 (88.1%) underwent a surgical procedure.
 - All the S. aureus strains identified on PCR assay were susceptible to methicillin and mupirocin.
 - The rate of *S. aureus* infection was 3.4% (17/504 patients) in the mupirocin–chlorhexidine group vs.7.7% (32/413 patients) in the placebo group (RR, 0.42; 95% CI, 0.23 to 0.75).
 - The effect of mupirocin–chlorhexidine treatment was most pronounced for deep surgical-site infections (RR, 0.21; 95% CI, 0.07 to 0.62).
- The time to the onset of nosocomial infection was shorter in the placebo group than in the mupirocin–chlorhexidine group (P = 0.005).

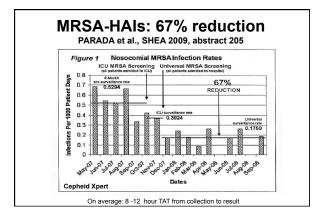
Bode LGM et al., N Engl J Med 2010;362:9-17

Preventing Surgical Site Infections in Nasal Carriers of Staphylococcus aureus

/ariable	Mupirocin– Chlorhexidine (N=504)	Placebo (N = 413)	Relative Risk (95% Cl)*
	no. (96)	
5. aureus infection	17 (3.4)	32 (7.7)	0.42 (0.23-0.75)
Source of infection†			
Endogenous	12 (2.4)	25 (6.1)	0.39 (0.20-0.77)
Exogenous	4 (0.8)	6 (1.5)	0.55 (0.16-1.92)
Unknown	1 (0.2)	1 (0.2)	
ocalization of infection			
Deep surgical site‡	4 (0.9)	16 (4.4)	0.21 (0.07-0.62)
Superficial surgical site‡	7 (1.6)	13 (3.5)	0.45 (0.18-1.11)
Lower respiratory tract	2 (0.4)	2 (0.5)	0.82 (0.12-5.78)
Urinary tract	1 (0.2)	0	
Bacteremia	1 (0.2)	1 (0.2)	
Soft tissue	2 (0.4)	0	
Relative risks are for S. <i>aureus</i> The source of the S. <i>aureus</i> is trains with strains isolated shoresis. Data are for surgical patient: ind 367 in the placebo grou	nfections was de from the infections only: 441 in the	etermined by on site by pul:	comparing nasal sed-field gel electro

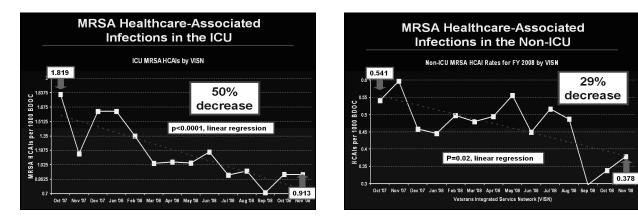
SSI Prevention Bundle


- Correct antimicrobial prophylaxis (current drug, given at correct time and discontinued at the correct time).
- No hair shaving
- Glucose control (peri-operative)
- Normothermia (except cardiac surgery)
- Pre-op screening for *S. aureus* (or MRSA) and if positive, decolonize (mupiricin/CHG baths/vanco prophylaxis)


Prevention Possibility: 40-60%

Methicillin-resistant Staphylococcus aureus (MRSA) Infection Prevention

True Universal MRSA Screening Dramatically **Reduces MRSA Infection Rates**


- Study Design: Observational, prospective interventional study with universal screening using MRSA-PCR on all admissions to three hospitals (total: 850 beds and 40,000 admissions per year) in Evanston, III.
- **<u>Compared</u>**: Passive surveillance (clinical detection-12m); Targeted surveillance cultures (clinical culture + high risk = ICU-12m); or Universal patient screening--21m.
- August 2005 to September 1, 2006.
- Intervention: Nasal screening. MRSA+ contact isolation, topical decolonization (mupricin).
- Poisson and segmented regression models used to compare prevalence density. Robicsek et al. Annals Intern Med 2008;148:409-418

The Veteran's Hospital Administration (VHA) **MRSA** Control Program

- The national initiative focuses on implementing the VHA MRSA
- Bundle which consists of four essential elements (ADI): Active Surveillance Testing [AST](Admission/Transfer/Discharge Swabbing)
- Hand Hygiene
- Contact Precautions .
- Cultural Transformation (Leadership and Staff Engagement)
- Consistent use of the VHA MRSA Bundle had been shown to markedly reduce MRSA-related infections in the pilot facilities.
- Phase I: The VHA system began doing universal patient testing in 2006 at its approximately 150 hospitals in ICU patients. Phase II of the initiative began in March 2007 and was a national roll-out including all VHA medical facilities with all patients (ICU and non-ICU).
- MRSA prevalence on admission ranged from 5% to 22% (clinical culture 1-1.5%; AST 9%-12%).

Hosted by Martin Kiernan martin@webbertraining.com www.webbertraining.com

MRSA Prevention Bundle

- · Screen high risk or all patients.
- Pre-operative screening of surgical implant patients; if MRSA-positive decolonize with intranasal mupiricin, CHG baths, and use vancomycin prophylaxis.
- Barrier precautions for MRSA positive patients.
- · Hand hygiene
- · Environmental cleaning

Prevention Possibility: ICU-50-75%; Hospital-wide: >25%; Surgical implant patients: nearly 100%

Conclusions

- Zero tolerance—trying to prevent all preventable healthcare-associated infections (HAIs)--is the new horizon for infection control.
- Benchmarking should be avoided with others or national databases. Compare your rate to your own rate (or zero) over time.
- Most HAI prevention interventions are low technology and not expensive.
- Implementation of evidence-based prevention interventions, including bundles with the latest technology, should be a high priority for all infection control personnel.
- We should all be striving to achieve a Zero Rate of preventable HAIs.

Thank you!

COMING SOON		
28 Apr. 11	(Free British Teleclass – A. Denver Russell Memorial Teleclass) The Spaulding Classification for Disinfection and Sterilization Is it Time to Keconsider? Speaker: Dr. Gerry McDonnell, Steris Inc.	
05 May 11	(Free WHO Teleclass) The Importance of Worldwide Hand Hygiene Events and Activities Speaker: Prof. Didier Pittet, University of Geneva Hospitals Sponsored by: WHO Patient Safety Challenge (www.who.int/gpsc/en)	
09 May 11	(Free South Pacific Teleclass) Voices of the Australian Infection Control Association Speaker: AICA Board	
12 May 11	The Faecal Quandary – Bedpan Management in a Modern Age Speaker: Gerlie van Knippenberg-Gordebeke, The Netherlands Sponsored by: MEIKO Maschinenbau GmbH & CO.KG	
19 May 11	Human Factors Engineering Applications for Infection Prevention and Control Speaker: Dr. Hugo Sax, University of Geneva Hospitals Sponsored by GOJO (www.gojo.com)	
26 May 11	Safe Injection Devices: 10 Years Out Where are the Gaps? Speaker: Ed Krisiunas, WNWN International Inc.	
w	ww.webbertraining.com/schedulep1.php	