AD Russell Memorial Teleclass Does Improving Surface Cleaning and Disinfection Reduce Healthcare-Associated Infections?

William A. Rutala, PhD, MPH

Director, Hospital Epidemiology, Occupational Health and Safety; Professor of Medicine and Director, Statewide Program for Infection Control and Epidemiology University of North Carolina at Chapel Hill and UNC Health Care, Chapel Hill, NC

> Hosted by Prof. Jean-Yves Maillard Cardiff University, Wales

> > www.webbertraining.com April 25, 2013

Does Improving Surface Cleaning and Disinfection Reduce Healthcare-Associated Infections? Objectives

- · Role of the environment in disease transmission
- Adequacy of room cleaning and monitoring thoroughness of room cleaning
- · Methods for room decontamination
- · Does improved surface disinfection reduce HAIs

Does Improving Surface Cleaning and Disinfection Reduce Healthcare-Associated Infections? Objectives

- Role of the environment in disease transmission
- Adequacy of room cleaning and monitoring thoroughness of room cleaning
- · Methods for room decontamination
- · Does improved surface disinfection reduce HAIs

HEALTHCARE-ASSOCIATED INFECTIONS IN THE US: IMPACT

- 1.7 million healthcare-associated infections (HAIs) per year
- 98,987 deaths due to HAI
 - Pneumonia 35,967
 - Bloodstream 30,665
 - Urinary tract 13,088
 - Surgical site infection 8,205
 Other 44,200
 - Other 11,062
- 6th leading cause of death (after heart disease, cancer, stroke, chronic lower respiratory diseases, and accidents)¹
 ¹ National Center for Health Statistics, 2004

ENVIRONMENTAL CONTAMINATION LEADS TO HAIs

- There is increasing evidence to support the contribution of the environment to disease transmission
- This supports comprehensive disinfecting regimens (goal is not sterilization) to reduce the risk of acquiring a pathogen from the healthcare environment/equipment

KEY PATHOGENS WHERE ENVIRONMENTIAL SURFACES PLAY A ROLE IN TRANSMISSION

- MRSA
- VRE
- Acinetobacter spp.
- Clostridium difficile
- Norovirus
- Rotavirus
- SARS

ENVIRONMENTAL CONTAMINATION LEADS TO HAIs

- Frequent environmental contamination
- Microbial persistence in the environment
- HCW hand contamination
- Relationship between level of environmental contamination and hand contamination
- Transmission directly or on hands of HCPs
- Housing in a room previously occupied by a patient with the pathogen of interest is a risk factor for disease
- Improved surface cleaning/disinfection reduces disease incidence

Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales www.webbertraining.com

						_
	Outbreak	Endemic		Site estimat mean5		
	Rampling et al**	Boyce et als==	Sexton et al ^{si} †	Lemmen et als**‡	French et al ^{64*}	1
Floor	9%	50-55%	44-60%	24%		34.5%
Bed linen		38-54%	44%	34%		41%
Patient gown		40-53%		34%		40.5%
Overbed table		18-42%	64-67%	24%		40%
Blood pressure cuff	13%	25-33%				21%
Bed or siderails	5%	1-30%	44-60%	21%	43%	27%
Bathroom door handle		8-24%		12%¶		14%
Infusion pump button	13%	7-18%		30%		19%
Room door handle	11%	4-8%		23%	59%	21.5%
Furniture	11%		44-59%	19%		27%
Flat surfaces	7%		32-38%			21.5%
Sink taps or basin fitting				14%	33%	23.5%
Average guoted**	11%	27%	49%	25%	74%	37%

ENVIRONMENTAL SURVIVAL OF KEY PATHOGENS ON HOSPITAL SURFACES

Pathogen	Survival Time
S. aureus (including MRSA)	7 days to >12 months
Enterococcus spp. (including VRE)	5 days to >46 months
Acinetobacter spp.	3 days to 11 months
Clostridium difficile (spores)	>5 months
Norovirus (and feline calicivirus)	8 hours to >2 weeks
Pseudomonas aeruginosa	6 hours to 16 months
Klebsiella spp.	2 hours to >30 months

Adapted from Hota B, et al. Clin Infect Dis 2004;39:1182-9 and Kramer A, et al. BMC Infectious Diseases 2006;6:130

Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales www.webbertraining.com

· Does improved surface disinfection reduce HAIs

Mean proportion of surfaces disinfected at is 32% Terminal cleaning methods ineffective (products effective practices deficient [surfaces not wiped]) in eliminating epidemiologically-important pathogens

MONITORING THE EFFECTIVENESS OF CLEANING Cooper et al. AJIC 2007;35:338

- · Visual assessment-not a reliable indicator of surface cleanliness
- ATP bioluminescence-measures organic debris (each unit has own reading scale, <250-500 RLU)
- Microbiological methods-<2.5CFUs/cm²-pass; can be costly and pathogen specific
- Fluorescent marker-transparent, easily cleaned, environmentally stable marking solution that fluoresces when exposed to an ultraviolet light (applied by Infection Preventionist unbeknown to EVS, after EVS cleaning, markings are reassessed)

Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales www.webbertraining.com

ENVIRONMENTAL CONTAMINATION LEADS TO HAIs Suboptimal Cleaning

- There is increasing evidence to support the contribution of the environment to disease transmission
- This supports comprehensive disinfecting regimens (goal is not sterilization) to reduce the risk of acquiring a pathogen from the healthcare environment

Does Improving Surface Cleaning and Disinfection Reduce Healthcare-Associated Infections? Objectives

- Role of the environment in disease transmission
- Adequacy of room cleaning and monitoring thoroughness of room cleaning
- Methods for room decontamination
- · Does improved surface disinfection reduce HAIs

DISINFECTION AND STERILIZATION Rutala, Weber, HICPAC. 2008. www.cdc.gov

- EH Spaulding believed that how an object will be disinfected depended on the object's intended use
 - CRITICAL objects which enter normally sterile tissue or the vascular system or through which blood flows should be sterile
 - SEMICRITICAL objects that touch mucous membranes or skin that is not intact require a disinfection process (high-level disinfection[HLD]) that kills all microorganisms but high numbers of bacterial spores
 - NONCRITICAL objects that touch only intact skin require lowlevel disinfection

LOW-LEVEL DISINFECTION FOR NONCRITICAL EQUIPMENT AND SURFACES

Use Concentration

Exposure time \geq 1 min Germicide

70-90%
100ppm (1:500 dilution)
ÚD
UD
UD
0.5%, 1.4%

UD=Manufacturer's recommended use dilution

ALL "TOUCHABLE" (HAND CONTACT) SURFACES SHOULD BE WIPED WITH DISINFECTANT

"High touch" objects only recently defined (no significant differences in microbial contamination of different surfaces) and "high risk" objects not epidemiologically defined.

Effective Surface Decontamination

Practice and Product

TABLE 2								
DISINFECTANT ACTIVITY AGAINST ANTIBIOTIC-SUSCEPTIBLE AND ANTIBIOTIC-RESISTANT BACTERIA								
	VSE		VRE MSSA			MB	SA	
Product	0.5 min	5 min	0.5 min	5 min	0.5 min	5 min	0.5 min	5 min
Vesphene IIse	>4.3	>4.3	>4.8	>4.8	>5.1	>5.1	>4.6	54.6
Clorox	>5.4	>5.4	>4.9	>4.9	>5.0	>5.0	>4.6	>4.6
Lysol Disinfectant	>4.3	>4.3	>4.8	>4.8	>5.1	>5.1	>4.6	>4.6
Lysol Antibacterial	>5.5	>5.5	>5.5	>5.5	>5.1	>5.1	>4.6	>4.6
Vinegar	0.1	5.3	1.0	3.7	+1.1	+0.9	+0.6	2.3
Abbreviations: MRSA, methicili Data represent mean of two tria were calculated as the log of Né	n-resistant Staphylococc a (n=2). Values precede /No, where Nd is the ti	ns owness: MSSA, o of by ">" represent ter of bacteria surv	nethicilin-susceptible the limit of detection riving after exposure	S carrenz; VRE, via of the assay, Assay and No is the titer	ncomycin-realatant 25 n were conducted at a of the control.	temperature of 20	ncomycia-susceptible 'C and a relative hum	e Enterococcus. sidity of 45%. Results

SURFACE DISINFECTION Effectiveness of Different Methods, Rutala et al. 2012					
Technique (with cotton)	MRSA Log ₁₀ Reduction (QUAT)				
Saturated cloth	4.41				
Spray (10s) and wipe	4.41				
Spray, wipe, spray (1m), wipe	4.41				
Spray	4.41				
Spray, wipe, spray (until dry)	4.41				
Disposable wipe with QUAT	4.55				
Control: detergent	2.88				

Surface Disinfection

- Wipe all "touchable" or "hand contact" surfaces with sufficient wetness to achieve the disinfectant contact time (≥ 1 minute).
- Daily disinfection of surfaces (vs cleaned when soiled) in rooms of patients with CDI and MRSA reduced acquisition of pathogens on hands after contact with surfaces and on hands caring for the patient

Does Improving Surface Cleaning and Disinfection Reduce Healthcare-Associated Infections? Objectives • Role of the environment in disease transmission • Adequacy of room cleaning and monitoring thoroughness of

- room cleaning
- Methods for room decontamination
- Does improved surface disinfection reduce HAIs

Environmental Disinfection Interventions

1. Cleaning product substitutions

- 2. Improvements in the effectiveness of cleaning and disinfection practices
 - Education
 - Audit and feedback
 - Addition of housekeeping personnel or specialized cleaning staff
- 3. Automated technologies

Disinfectant Product Substitutions Donskey CJ. AJIC. May 2013

- Six of the 7 interventions were quasi-experimental studies in which rates were compared before and after interventions with no concurrent control group
- Confounding factors not reported (e.g., hand hygiene or Contact Precaution compliance)
- Decrease in the incidence in 6 of 7 studies

Ref	Setting	Effect on CDI rates
1	Medical Ward	Outbreak ended
2	Bone marrow transplant (BMT) unit, Medical Ward, ICU	Significant decrease on BMT unit, but not o the other 2 wards
3	2 medical wards (crossover study)	Decreased on 1 of 2 wards
4	Medical and surgical ICUs	Decreased on both units
5	3 hospitals	48% decrease in prevalence density of CDI
6	2 medical wards	85% decrease in hospital acquired CDI

Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales www.webbertraining.com

Environmental Disinfection Interventions Donsky CJ. AJIC. May 2013.

- 1. Cleaning product substitutions
- Improvements in the effectiveness of cleaning and disinfection practices
 - Education
 - Audit and feedback
 - Addition of housekeeping personnel or specialized cleaning staff
- 3. Automated technologies

		1	Donskey CJ. AJIC. M	ay 2013	Sincetio
lable 2 itudic s	involving intervent	tions to improve effective	e new of cleaning and disinfection		
Bef	Setting and emarksm	Design	Intervention	Monitoring of disinfection	Effect
38	Bum KUJ VRE	Quasiesperimental	Twice-daily cleaning of a li rooms, training of housekeepers, dedicated housekeeper for the unit, and use of checklisist to mide cleaning	Decreased environmental contamination	Outbreak ended
	Medical ICU VRE	Quasiesperimental	Education plus monitoring and feedback to improve daily and terminal deaning	Decreased environmental contamination (10% to 3%-4% alter positive) and hand contamination (5%% to 10%-13%)	Decreased VRE acquisition (hazard ratio, 0.36)
30	VICE & MRSA	Quasiesperimental	Feedback using uprecent markers and bucket cleaning method with focus on terminal cleaning.	Decreased contamination with MRSA or VRE after cleaning (27% vs.45% of	Decreased acquisition of MRSA by 40% and VRE by 20%
40	KU Absumati	Quasiesperimental	Product substitution (hypochiorite [1,000 ppm replaced detergent]), new cleaning protocol s, additional cleaners staff	Decreased environmental contamination	Outbreak ended
41	Sorgical werd MRSA	Quasiesperimental	Entire ward disinfected, increased deaning 57 hours per week including shared equipment and removal of dust,	Decreased environmental contamination from 113 to 0.73	Decreased MRSA acquisition
42	2 Surgical wards MISA	Ward-level cossover design	One additional cleaner disinfected high-souch surfaces in patient rooms 2-3 times/day and portable equipment and the munder station	Decreased a erabic microbial contamination by 333, but no decrease in environment MDSA	Decreased MRSA acquisition by 27%
43	Hospital Cat/ficile	Quasiexperimental	Blue lies: product substitutions (list: hypothionis: 2nd: 7% accelerated hydragen peaks de); compare hendve ward disinfection when 3 nosseemial (D) come	No	No decrease in CDI incidence
22	2 KUs MISA	1 Year randomized crossover study	Twice-daily enhanced cleaning of high-touch surfaces with ultramicro ber doths and a copper-based blockle; addition of a team of trained basic on synthesister.	Decreased MRSA contamination in environment (15% vs 5%) and physician hands (3% vs 0.2%)	No decrease in MISA acquisition(adjusted odds ratio, 0.58)
44	Hospital VRE	Quasicoperimental	Product subatitution (hypochlorite 1,000 ppm), daily disinfection of all rooms, employment of cleaning supervisors, formal training plus monitoring and feedback, and 3-times yearly super-clean-disinfection of hish-risk wards	Decreased VRE contamination by 663	Decreased newly recognized VRE colonization by 25% and VRE becteremia by 83%

	Acquisit	tion of Pathogens
Ref	Setting/Organism	Intervention
1	Burn ICU/VRE	Twice daily cleaning
2	Medical ICU/VRE	Improved daily and terminal cleaning
3	10 ICUs VRE &MRSA	Feedback using fluorescent markers, bucket cleaning
4	Neuro ICU Acinetobacter	Hypochlorite and education of cleaning staff
5	Surgical ward/MRSA	Increased cleaning hours/wk including shared equipment and dust
6	2 surgical wards MRSA	1 additional cleaner; 6 month cross-over desig

Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales www.webbertraining.com

Improve Effectiveness of Cleaning/Disinfection Donskey CJ. AJIC. May 2013

- Seven of the 9 interventions, pathogen acquisition was reduced or an outbreak resolved.
- Decrease in environmental contamination in 8 of 9 studies
- Interventions included: variety of different cleaning strategies (daily disinfection and/or disinfection of portable equipment, education of housekeepers, new protocols or checklists and designation of responsibility for cleaning specific items).

	disinfect	tion to re	educe infect	tions?
Ref	Measurement	Baseline	Intervention	Effect
1	% sites positive for VRE after cleaning	10%	3 - 4%	↓ VRE acquisition (hazard ratio 0.36)
2/3	% rooms with ≥1 sites positive for MRSA or VRE after cleaning	45%	27%	↓ acquisition of MRSA by 49% and VRE by 29%

Environmental Disinfection Interventions Donskey CJ. AJIC. May 2013.

- 1. Cleaning product substitutions (improved effectiveness)
- 2. Improvements in the effectiveness of cleaning and disinfection practices
 - Education
 - Audit and feedback
 - Addition of housekeeping personnel or specialized cleaning staff
- 3. Automated technologies

	,		,•	•
und HP sy	stems have	been de	monstrated	l to be ef
nst variou	is healthcar	re-associ	ated patho	aens
TABLE 1. Comparise	n of Room Decontamination Sw	stems That Use UV Irradi	ation and Hydrogyn Peroxide (10
	Sterinis	Steris	Bioquell	Tru-D
Abbreviation Active agent	DMHP (dry mist HP) Stenusil (5% HP, <50 ppm silver cations)	VHP (vaporized HP) Vaprox (35% HP)	HPV (HP vapor) 35% HP	UV-C UV-C irradiation at 254 nm
Application	Aerosol of active solution	Vapor, noncondensing	Vapor, condensing	UV irradiation, direct and reflected
active agent from enclosure)	- Passive decomposition	conversion	Addre addytie conversion	Het accounty
Sporicidal efficacy	Single cycle does not inacti- vate Bacillus atrophacus Bits colobor, reduction in	Inactivation of Geobe- cillus stearothermo- akilus Ris	Inactivation of G. stearother- mophilus Bls; >6-log _{in} re- duction in G. diffield in	1.7-4-log _a reduction in C. difficile ^a in situ
	Clostridium difficile* and incomplete inactivation in	[vitro and complete inacti- vation in situ	
Evidence of clinical	None published	None published	Significant reduction in the incidence of C. difficile	None published

lable 3 Studies invol	ning use of vaporized hydrogen per	nide for ward and/or terminal ro	om di sinfection	
Reference	Setting/organism	Intervention	Monitoring of disinfection	Effect
45	Hospital-wide Oostridium dif cile	(III rooms	No	Outhreak ended
45	Long-term acute care Aciaetsbacter barramoi	Affected patient rooms	Decrease sites positive (8.6% to 0%)	Outbre als ended
47	Necnatal XU Securita menoreme	Entire unit	No Servetic recovered after hudmeen perceide vanor	Outbre als ended
43	12-Bed) CU MDR-CMR	All ICU monte	Decrease sites positive (47.6% to 0%)	No MDR-QIR cases for 2 months but recurrent cases at 3-4 months
49	Hospital-wide Costrictum di cile	Intensive decontantination of 5 high-incidence wards	Decrease sites positive (25.6% to 0%)	Significant de crease in (D) incidence on the high-incidence wards
50	6 High-rish wards (3 hydrogen perceide vapor and 3 control wards) MTRO:	Terminal MDRO rooms	Decreased contamination(rel ative risk 0.65)	64VDe crease in MDRO acquisition; 80V decrease in VSE acquisition

Automated Disinfection Devices Donskey CJ. AJIC. May 2013

- Hydrogen peroxide vapor has been used in outbreak settings and has been associated with reductions in colonization or infection with pathogens.
- Boyce et al demonstrated that HP vapor for terminal disinfection of CDI rooms was associated with a significant reduction in the incidence of CDI

Acknowledgment

- Several slides provided by Curtis J. Donskey, MD, Cleveland VA Medical Center and Case Western Reserve School of Medicine, Cleveland, OH. June 2012
- Donskey CJ. Does improving surface cleaning and disinfection reduce healthcare-associated infections? Am J Infect Control May 2013.

www.disinfectionandsterilization.org

	Coming Soon
06 May	(Free WHO Teleclass Europe Special Lecture for May 5) HAND HYGIENE PROMOTION UNIVERSAL SPREAD: IMPACT AND PATIENT PARTICIPATION Speaker: Prof. Didier Pittet, University of Geneva Hospitals Margaret Murphy, Patients for Patient Safety, WHO
09 May	SURVEILLANCE OF HEALTHCARE ASSOCIATED INFECTION IN ACUTE CARE SETTINGS Speaker: Teresa Horan, Rollins School of Public Health, Emory University
May 16	WHAT'S NEW IN TECHNOLOGIC INNOVATIONS FOR THE PREVENTION OF INTRAVASCULAR CATHETER ASSOCIATED BLOODSTREAM INFECTION Speaker: Prof Mark Rupp, University of Nebraska Medical Center
30 May	PREVENTING CATHETER-ASSOCIATED URINARY TRACT INFECTIONS IN ACUTE CARE SETTINGS
	www.webbertraining.com/schedulep1.php

Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales www.webbertraining.com