The Hand is Quicker Than a Sneeze in the Spread of Disease								
Charles P. Gerba Departments of Soil, Water and Environmental Science and Epidemiology and Environmental Health University of Arizona, Tucson, AZ								
	Soil, Water and Environm	nental Science						
Mel and Enid Zuckerman College of Public Health	Hosted by Paul Webber paul@webbertraining.com	Sponsored by						
	www.webbertraining.com	September 13, 2012						

How do we Logically Assessment the Spread and Control of Disease Transmission in Indoor Environments

2

Risk Assessment

> Estimation of potential adverse effects associated with exposure of individuals or populations to hazards

Quantitative Microbial Risk Assessment is an approach that allows the expression of risks in a quantitative fashion in terms of infection, illness, or mortality from microbial pathogens

Four Basic Steps in Risk Assessment

- Hazard Identification identifying the organism (s) – MRSA, C. difficile, norovirus, Salmonella
- Dose-Response Assessment relationship between the concentration of harmful substance and the probability of an adverse outcome (i.e. how many does it take to make you sick or kill you)

Factors Important in Assessing Exposure

- > Route of Exposure (hand, inhalation, ear, mouth)
- Duration of exposure
- Entire work day?, a few hours
- > Number of exposures
 - How many times in a day, month, year
- > Degree of exposure
 - Number and types of surfaces touched
 - Numbers of pathogen on the surface

Microbial Risks are usually defined as risk of infection from a one time exposure or over a period of one year

Microbial Risk Assessment

- > What is an acceptable Microbial Risk?
- > USEPA Guideline drinking water treatment should be treated to reduce the risk of *infection* to 1:10,000 per year (Surface Treatment Rule)

How	good is	QMRA ? Outbrea	Can Com iks	oare to	
Comparison of Outbreak Data to Model Predictions for Assessments of Risks Associated with Exposure to Salmonella					
Food	Dose (CFU)	Amount consumed	Attack rate (%)	Predicted P (%)	
Water	17	1 liter	12	12	
Pancretin	200	7 doses	100	77	
Ice cream	102	1 portion	52	54	
Cheese	100-500	28 g	28-36	53-98	
Cheese	105	100 g	100	> 99.99	
	lam 10 ⁶ 5		100	< 00 00	

Application of Microbial Risk Assessment

- Set Standards for pathogens on fomites/ water/food
- Determine the cost/benefits of different intervention options
- > Assessment strategies for control of pathogens
 - Hand hygiene
 - Type of disinfectant
 - Frequency of disinfectant use
 - Self-sanitizing surfaces or fabrics

Hand Contact in Adults > Adults touch their face 15.5 times per hour • 2.5 eyes • 5 nose • 8 lip

How fast does a virus move in an office Building? > Add a bacterial virus to the entrance door

- entrance door handle to an office building with 80 persons
- Collect samples after 2, 4 and 7 hours of fomites and hands

Intervention

- Talk about the importance of hand hygiene in disease transmission
- Supply hand sanitizers and disinfecting wipes at desk
- > Supply hand sanitizer in break room
- > 52% of the persons in the office agreed to participate

Effectiveness of Intervention Products Against MS-2 Virus

- > Hand Sanitizer = 74.5% reduction of virus on the hands
- Disinfecting wipe = 50% reduction of virus on fomites

IS THERE A SIGNIFICANT DIFFERENCE BETWEEN VIRUS NUMBERS on Fomites BEFORE AND AFTER INTERVENTION AT T=4HOURS?				
Coliphage	Answer to the question	p-value		
MS-2	Yes	0.00006		

Occurrence of <i>Salmonella</i> on kitchen cleaning clothes *Average of both positive and negative measurements								
Treatment	*Average <i>Salmonella</i> Concentrati on (MPN)	Standard Deviation	Maximum	Minimum	Number of Negative Observations	Number of Positive Observations		
Without Bleach Intervention (Control)	661.28	8,108	110,000		173			
With Bleach Intervention	8.44	88	1,200	0	178	2		

What we have learned

- > We can model probabilities of infection from different exposure scenarios in indoor environments
- > Can validate models from outbreak data
- Can quantify the impact of interventions on disease reduction
- Models suggest that a 50% reduction of a virus on fomites/hands can result in an 80% reduction in illness with 50% of population participating in the intervention

