Rapid Bacterial Diagnostics Are We There Yet?

Stephen M. Brecher, Ph.D. VA Boston HealthCare System BU School of Medicine

Hosted by Nicole Kenny Virox Technologies Inc.

www.webbertraining.com

February 27, 2014

3

Disclosures

- · Bacterioscan Advisory Board
- · Cubist Speakers Bureau, in-house training
- Merck Speakers Bureau
- Theravance Advisory Board
- Cepheid Collaborative Studies

Objectives

- Define "Rapid", "We" and "There"
- Old technology Don't throw out the baby with the bath water
- New technology –Keeping me from retirement
- Are we there yet?

Rapid

2

Minutes to 3 hours Which includes results communicated to the health care provider

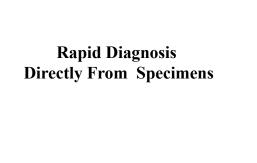
Who are "WE"

- Clinical Microbiology Laboratory
- Physician
- Admit/treat/do not treat
- Pharmacy/Antibiotic Stewardship
- Infection Control
- Team approach: all of the above - e.g., ID, pharmacy, lab, IC, etc.

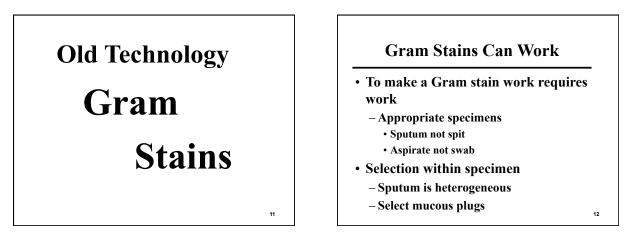
Team Approach

- No result sitting in a lab by itself is useful
- In order for RBD to work, need a systems approach
- Who calls who with what?
- What is the desired intervention?
- How does it effect outcome?

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com


5

6


What is "There"	Desired Outcomes
a single pathogen Aultiple pathogens Any potential pathogen Complex disease pathogens (e.g. CF) Anatomical specific pathogens Antibiotic specific result: S or R	 Reduce time to appropriate therapy Reduce length of stay Reduce transmission of pathogen Reduce cost
Goals	

Improve patient care/reduce length of stay/decrease transmission via IC

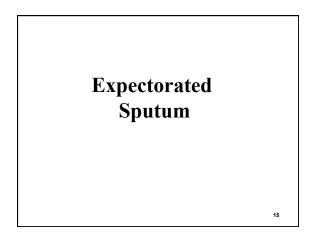
Decrease emergence of antibiotic resistance/antibiotic stewardship

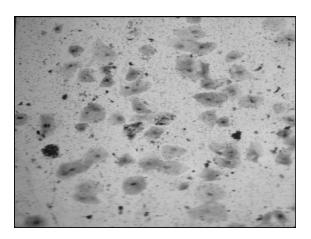
10

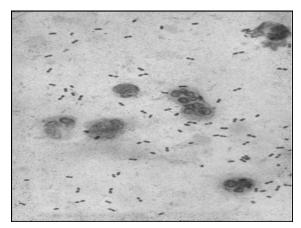
٩

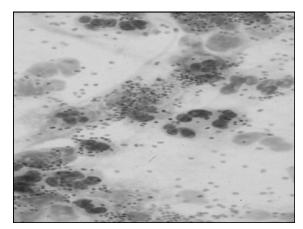
13

"Working" Gram Stains The Chodosh Method

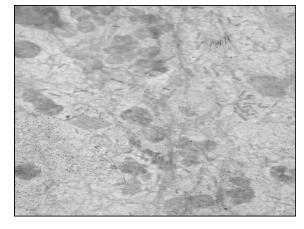

- Gram stains predicted community respiratory pathogens in AECBB study patients with high accuracy and PPV
- Mucous plugs selected, examined for neutrophils and if present, slide gram stained. If GS showed a predominant organism, the other half of the mucous plug was used for culture

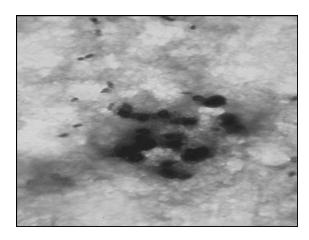

Predicting Pathogens in CA-AECBB¹

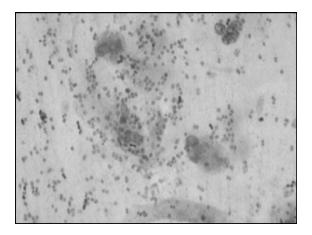

• 480 patients at study entry

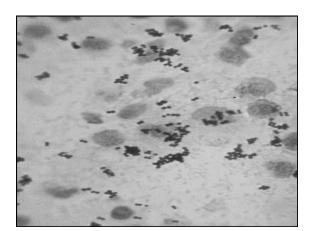

- GS predicted the cultured pathogen 321 times (67%)
- Predicted 2 pathogens but grew only 1 73 times (15%)
- Predicted 2 pathogens and grew 2 pathogens 35 times (7%)
- Predicted 1 or 2 pathogens and grew 1 predicted and 1 not predicted 38 times (8%)
- Predicted a pathogen and a pathogen not grown 13 times (3%)
- Also predicted absence of pathogen

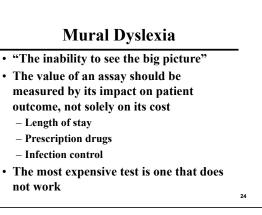
1. Brecher et al. Gram stains and cultures from sputum collected for 24 hours in selected patients with AECB.1996. ASM Annual Meeting. Abstract C226. New Orleans 14

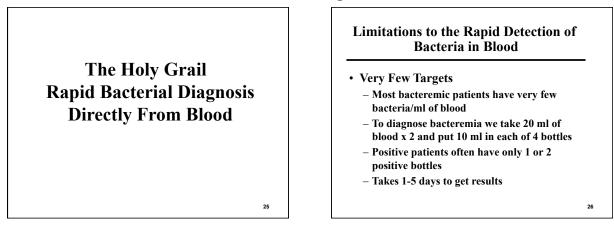


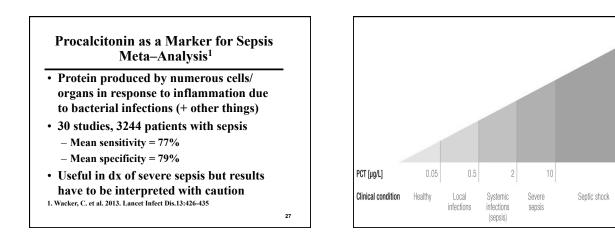


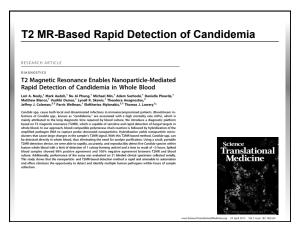

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

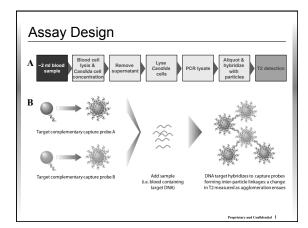

19

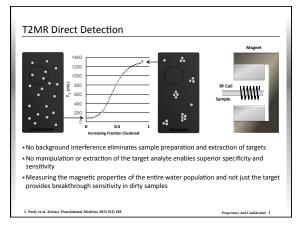

Predicting the Pathogen in Suctioned Respiratory Secretions

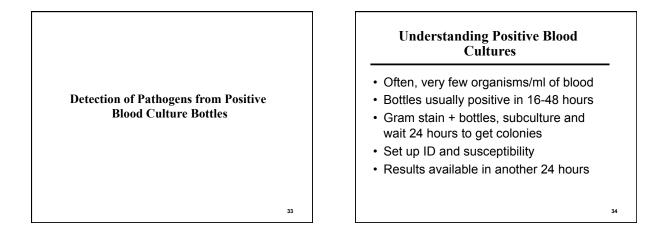


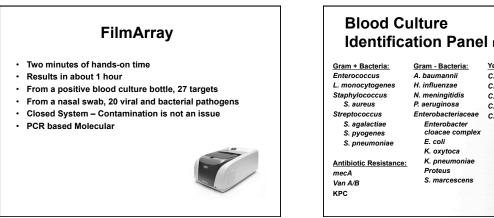


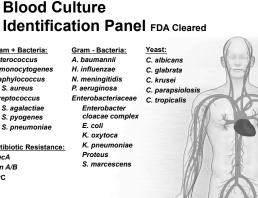


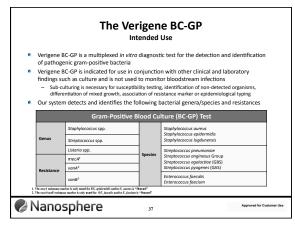


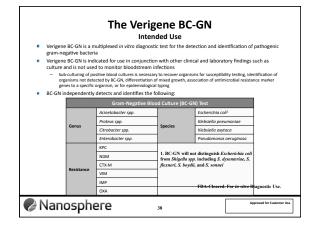


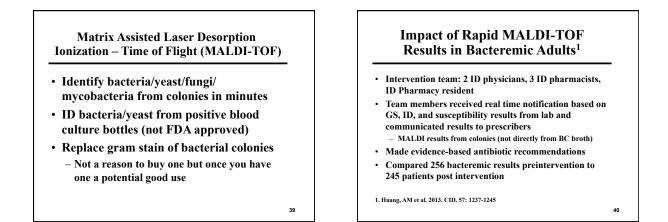


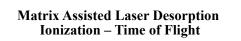



Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com




2 ml blood sample Blood cell ly & Candida concentrat	cell	→ Canada cells → PCR hysate → Aliquot & hybridize with particles → T2 detection
Target Species	LoD	 Limit of Detection (LoD) as low as 1 CFU/
C. albicans	3 CFU/mL	mL ¹
C. tropicalis	3 CFU/mL	 Anti-fungals in a patient sample can
C. parapsilosis	1 CFU/mL	prohibit cell growth in blood culture,
C. glabrata	2 CFU/mL	 leading to a false negative result¹ Equivalent or better sensitivity than blood
C. krusei	2 CFU/mL	culture with 25x faster turn-around time ²





	Preintervention	Postintervention
Time to organism ID	84.0 hours	55.9 hours
Time to effective therapy	30.1 hours	20.4 hours
Time to optimal therapy	90.3 hours	47.3 hours
ICU stay	14.9 days	8.3 days

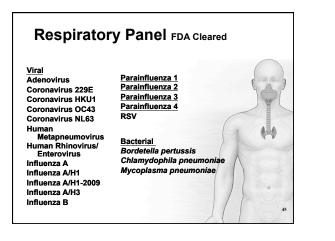
- Identify bacteria/yeast/fungi/ mycobacteria from colonies in minutes
- Replace gram stain of bacterial colonies¹
 - Not a reason to buy one but once you have one a potential good use

1. Mudie, K and SM Brecher. 2014. ASM submitted Abstract.

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com 42

43

*Quick*FISH/PNA FISH Positive Blood Cultures


- QuickFISH: Gram-Negative Bacilli (20 minutes) – E. coli. K. pneumoniae, or P. aeruginosa
- QuickFISH: Gram-Positive Cocci (20 minutes)
 S. aureus/CNS
- E. faecalis/E. faecium
 PNA FISH for Candida (QuickFISH coming)

*Quick*FISH is a trademark of AdvanDx

Rapid Bacterial and Viral Diagnosis Multi-Plex PCR

44

FilmArray[®]

The Evidence

Overall, 95% sensitivity and 99% specificity

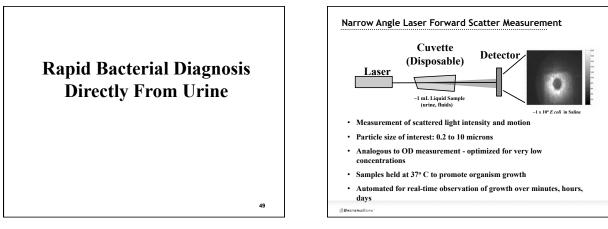
Pathogen	Sensitivity		Specificity
	Prospective	Retrospective	Prospective
Adenovirus	88.9%	100%	98.3%
Coronavirus HKU1	95.8%	n/a	99.8%
Coronavirus NL63	95.8%	n/a	100%
Coronavirus 229E	100%	100%	99.80%
Coronavirus OC43	100%	100%	99.60%
luman Metapneumovirus	94.6%	n/a	99.2%
luman Rhinovirus/Enterovirus	92.7%	95.7%	94.6%
nfluenza A	90.0%	n/a	99.8%
nfluenza A/H1	r/a	100%	100%
nfluenza A/H3	n/a	100%	100%
nfluenza A/H1-2009	88.9%	100%	99.6%
nfluenza B	n/a	100%	100%
Parainfluoriza Virus 1	100%	97.1%	99.9%
Parainfluenza Virus 2	87.4%	100%	99.8%
Parainfluenza Virus 3	95.8%	100%	98.8%
Parainfluenza Virus 4	100%	100%	99.9%
Respiratory Syncytial Virus	100%	n/a	89.1%
Bordetella pertussis	100%	94.6%	99.90%
Chlemydophile pneumoniae	100%	100%1	100%
Accoplasma pneumoniae	100%	84.4%	100%

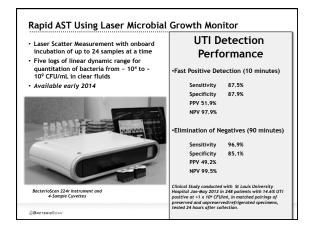
Value and Use of Rapid Respiratory Multi-Plex Panels

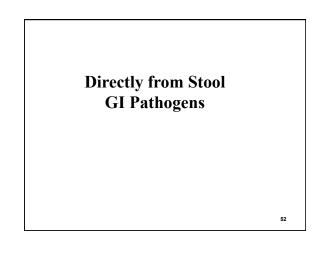
- If assay is run on ER patients and the TAT is less than 2 hours, save money by answering the following questions
 - Viral? Bacterial?
 - Admit or not?
 - Antibiotics? Oseltamavir?
 - If admit, ? Precautions, IC protocols

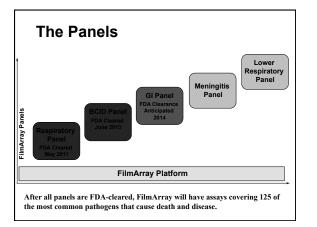
"Lab's Respiratory Panel Found to Curb Antibiotic Use"¹

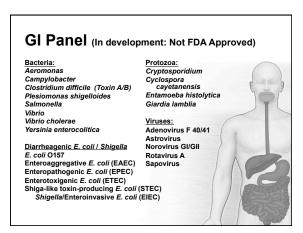
The following quote is from CAP today with respect to the use of a respiratory panel PCR for pediatric patients in an ED "Fewer children with respiratory disease symptoms hospitalized from the ED without a

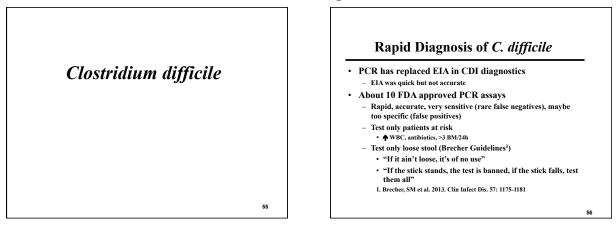

diagnosis, less antibiotic use, and a favorable ratio of reimbursement to expense..."

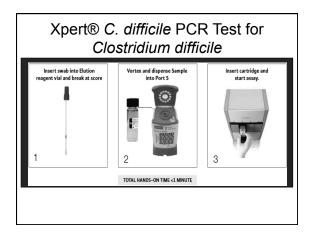

1. CAP Today January, 2014

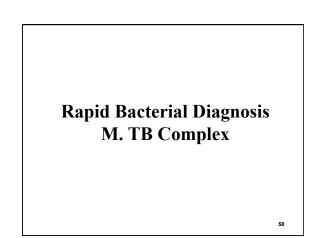

Hosted by Nicole Kenny, Virox Technologies Inc. www.webbertraining.com

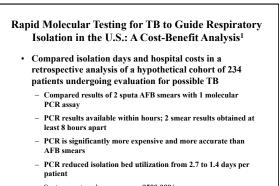

47

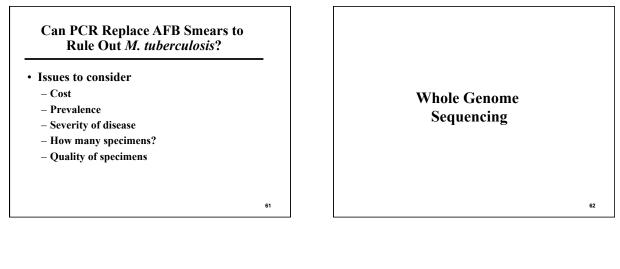

48

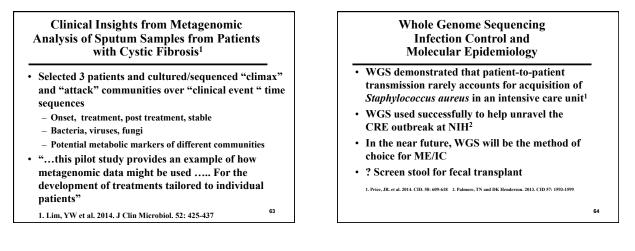


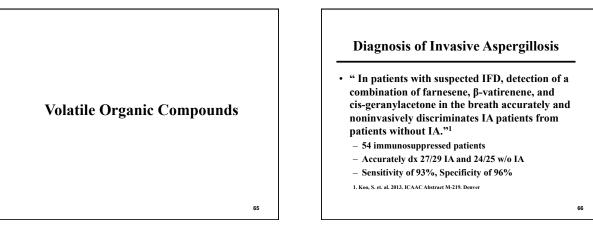









Rapid Molecular Detection of MTB Complex and Rifampin Resistance Directly in Respiratory Specimens


- MTB/RIF automated molecular (PCR) Test
 - Detects genes for MTB Complex (7 different Mycobacteria) and rifampin resistance (marker for multi-drug resistance)
 - Detected 551/561 culture positive, smear positive cases and 124/171 culture positive, smear negative cases
 - Correctly identified 200/205 rifampin resistant bacteria and 504/514 rifampin sensitive bacteria
 - May be used to replace AFB smears for respiratory specimens
 - http://www.nejm.org/doi/full/10.1056/NEJMoa907847

- System cost savings was over \$500,000/year
- 1. Millman, AJ. Et al. 2013. PLOS one. Volume 8: Issue 11.79669

67

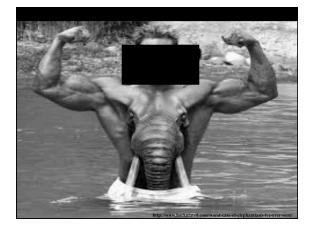
69

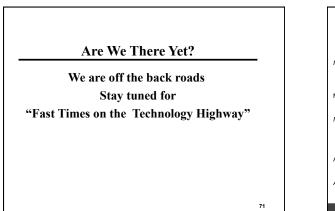
Point of Care Testing

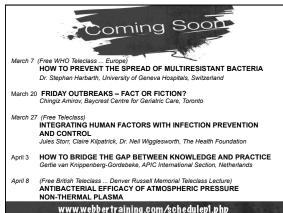
- R/O MTB in Pulmonary Clinics
- Group B Streptococci in OBGYN
- GC/Chlamydia, HIV, Herpes in STD Clinics
- Influenza and other respiratory viruses in the ER

Better Tests, Better Care: Improved Diagnostics for Infectious Diseases Caliendo, A. M. et al. CID 2013. 57: S139-S170

In this IDSA policy paper, we review the current diagnostic landscape, including unmet needs and emerging technologies, and assess the challenges to the development and clinical integration of improved tests. To fulfill the promise of emerging diagnostics, IDSA presents recommendations that address a host of identified barriers. Achieving these goals will require the engagement and coordination of a number of stakeholders, including Congress, funding and regulatory bodies, public health agencies, the diagnostics industry, healthcare systems, professional societies, and individual clinicians.


68


The Ultimate in Rapid The Selfie


Dr. Brecher,

I was a previously healthy 28 year old, very muscular male. I have traveled in Asia and Africa. I love the outdoors, have had numerous mosquito bites, and may have been exposed to *Wuchereria bancrofti*. I think I may have elephantiasis. Please see attached "selfie". Thanks for your help.

Hans

