

Hosted by Jane Barnett jane@webbertraining.com www.webbertraining.com

Comparison of the Burdens of Hospital-Onset, Healthcare Facility–Associated *Clostridium difficile* Infection and of Healthcare-Associated Infection due to Methicillin-Resistant *Staphylococcus aureus* in Community Hospitals

Becky A. Miller, MD;¹ Luke F. Chen, MD, MPH;¹ Daniel J. Sexton, MD;¹ Deverick J. Anderson, MD, MPH¹

We sought to determine the burden of nosocomial *Clostridium difficili* infection in comparison to other healthcare-associated infections (HAIs) in community hospitals participating in an infection control network. Our data suggest that *C. difficile* has replaced MISA as the most common etiology of HAI in community hospitals in the southeastern United States. *Infect Control Hosp Epidemiol* 2011;32(4):387-390

sp Epidemioi 2011,52(4).507-570

13

Hosted by Jane Barnett jane@webbertraining.com www.webbertraining.com

25

The Epidemiology of Community-Acquired *Clostridium difficile* Infection: A Population-Based Study

ill Khanna, MBBS¹, Darrell S. Pardi, MD, MS, FACG¹, Scott L. Aronson, MD^{1,2}, Patricia P. Kammer, CCRP¹, Robe nifer L. St Sauver, PhD¹, W. Scott Harmsen, MS⁴ and Alan R. Zinsmeister, PhD⁵

What is current knowledge?

 Clostridium difficile infection is increasing worldwide with hospitalization and antibiotic exposure as the most common risk factors.

Study highlights

 The epidemiology and characteristics of community-acquired Clostridium difficile infection are not well defined.

What is new here?

- A major proportion of *Clostridium difficile* infection patients is communityacquired.
- These patients are younger, often lack traditional risk factors, and have less
 severe disease than patients with hospital-acquired infection.

Am J Gastroenterol. 2012 January ; 107(1): 89–95. doi:10.1038/ajg.2011.398.

Hosted by Jane Barnett jane@webbertraining.com www.webbertraining.com

EDITORIALS
ls Clostridium difficile a threat to Australia's biosecurity? Thomas V Biley
Australia can benefit from lessons learned in the epidemic of C. difficile infection in Europe and North America
MJA • Volume 190 Number 12 • 15 June 2009
Every effort should be made to stop epidemic <i>C. difficile</i> from becoming established in our production animals. Unfortunately, the mere perception of <i>C. difficile</i> infection as a foodborne disease will damage the industry.
However, il cephalosporin use is driving <i>C. difficile</i> infection in animals overseas, then addi- tional efforts to target cephalosporin use in veterinary medicine may be needed in Australia
38

Meat product	No. samples	Total no. (%)	Ribotype	Toxinotype	∆tcdC, bp†	PFGE type	No. (%) po:
Ground beef (uncooked)	26	13 (50)	027		18	NAP1	1 (3.8)
						NAP1-related	2 (7 7)
			078	V	39	NAP7	8 (30.8
						NAP8	2 (7.7)
Summer sausage (ready to eat)	7	1 (14.3)	027		18	NAP1	1 (14.3
Ground pork (uncooked)	7	3 (42.9)	027		18	NAP1-related	1 (14.3
			078	V	39	NAP7	2 (28.6
Braunschweiger (ready to eat)	16	10 (62.5)	027	11	18	NAP1	2 (12.5
						NAP1-related	1 (6.2)
			078	V	39	NAP7	7 (43.8)
Chorizo (uncooked)	10	3 (30.0)	027		18	NAP1-related	1 (10.0)
			078	V	39	NAP7	2 (20.0)
ork sausage (uncooked)	13	3 (23.1)	027		18	NAP1-related	1 (7.7)
			078	V	39	NAP7	2 (15.4)
Ground turkey (uncooked)	9	4 (44.4)	078	V	39	NAP7	4 (44.4
Totals	88	37 (42.0)	027	11	18	NAP1	4 (4.4)
						NAP1-related	6 (6.7)
			078	V	39	NAP7	25 (27.8
						NAP8	2 (2.2)
*All samples were positive for cotB, wh	nich encodes the b	pinding componen	t of binary to»	in. PFGE, pulse	id-field gel electi	ophoresis.	
†Deletions in todC regulatory gene.							
							40
		Sc	nger ef	al Emore	Infoct Di	c 2009- 15-	819.821

survey		
Martijn P Bauer, Daan V Ed J Kuijper, for the ECD	V Notermans, Birgit H B van Benthem, Jon S IS Study Group*	Brøzier, Mark H Wilcox, Maja Rupnik, Dominiau e L Monnet. I aan T van Di Leneet 2011; 377: 63-73
Met	thods We set up a network of 106 k	aboratories in 34 European countries.
Microb	iological characteristics	
Most fre	equent PCR-ribotypes of toxi	genic isolates
014/0)20	61/389 (16%)
001		37/389 (10%)
078		31/389 (8%)
018		23/389 (6%)
106		20/389 (5%)
027		19/389 (5%)
002		18/389 (5%)
012		17/389 (4%)
017		14/389 (4%)

<u>A Webber Training Teleclass</u>

49

□ Contaminated food imported from North America

- \square 96% of Australian food locally produced
- □ A seasonality of RT 244 infections

also

Our 2nd theory

 □ Exactly the same problem occurring in NZ with the same food importation patterns as Australia
 □ But probably endemic local food-borne disease

Clostridium difficile in the Community: Food for Thought Prof. Tom Riley,

A Webber Training Teleclass

