

What's New in Number 2? Update on Diarrheal Disease from a Global Perspective

David Goldfarb MD FRCP(C)

BC Children's Hospital

www.webbertraining.com

May 17, 2016

Disclosure

- Faculty: Dr. David Goldfarb
- Relationships with commercial interests:
 - Nothing to disclose
- Research funding from the Public Health
 Agency of Canada, CIHR, Grand Challenges
 Canada, CDC Foundation, Bill and Melinda
 Gates Foundation, IDRC, ArcticNet, and
 investigator initiated grant from bioMerieux

Outline

- Global Burden of childhood enteric infections
- New insights from enhanced diagnostic studies
- Examples of efforts to address childhood diarrheal disease

Outline

- Global burden of childhood enteric infections
- New insights from enhanced diagnostic studies
- Examples of efforts to address childhood diarrheal disease

Burden of diarrheal diseases

 Diarrhea kills 2,195 children every day—more than AIDS, malaria, and measles combined

Burden Diarrheal Disease (cont'd)

 What about the children that make it through these frequent episodes of diarrhea in childhood?

Teleclass broadcast sponsored by GOJO (www.gojo.com)
A Webber Training Teleclass
www.webbertraining.com

But does being a little shorter really matter?

Global burden of enteric infections

stunting and cognitive outcomes

Descriptive summary of follow-up studies showing associations between stunting in early childhood and later scores on cognitive tests and school outcomes

	Philippines			Brazil* Attained grades (18 years, n=2041)	(9 years,	Jamaica [†]	
	Cognitive score (8 years, n=2489)					WAIS IQ ^{±118} (17-18 years, n=165)	Reading and arithmetic [‡] (17– 18 years)
Not stunted	56-4	0.17	11-2	8-1	92.3	0.38	0.40
Mildly stunted	53.8 (-0.21)	0.05 (-0.12)	10.3 (-0.26)	7-2 (-0-4)	89-8 (-0-20)		
Moderately or severely stunted	49·6 (-0·54)	-0.23 (-0.40)	9·7 (-0·43)	6.5 (-0.7)	79·2 (-1·05)	-0.55 (-0.93)	-0.60 (-1.00)

Data are mean (effect size as unadjusted difference from non-stunted children in z scores).

Grantham-McGregor S et al. Lancet. 2007;369:61.

Evidence for lasting disability effects from early childhood diarrhea/enteric infections* Growth shortfalls (esp. HAZ-2; 8.2cm by 7yo) •Crypto Infections increase diarrhea morbidity and nutritional shortfalls to 18m [Agnew 98; Lima 00; Newman 99] •Crypto infections +diarrhea = dec. wt gain @1m [Checkley 97] •Crypto infections <6m/stunted = .95-1.05 cm deficits @1y [Checkley 98] •EAggEC infections + inflammation = growth shortfalls [Steiner 98] •Diarrrhea<2yo = 3.6cm stunted @7yo (8.2cm w helminths) [Moore 01; + Checkley et al, 08] Fitness impairment (=17% decr. work prod.) ·Albendazole = 7% inc. HST @4m [Stephenson 93] •Diarrhea or Crypto <2yo = 4-8% dec. HST @4-7yo [Guerrant 99] •4.3% inc. HST = 16.6% inc. work prod. [Ndamba 93] Cognitive impairment (c. 10 IQ points) Diarrhea <2yo dec. WISC coding/digit @5-9yo [Guerrant 99] •Diarrhea <2yo dec. TONI @6-10yo [Niehaus 02] ·Giardia or stunting = 4-10 pts dec. WISC-R @9yo [Berkman 02] School performance (c. 1 yr) •Diarrhea <2yo = inc. AASS; AFG</pre> [Lorntz 06; Guerrant 02] * Petri et al JCI 118: 1277-1290, 2008; Guerrant et al Nutr Rev 66: 487-505, 2008. From: Guerrant R, Ped Acad Soc Mtg, April 30 2012

The sample comprised stunted (<-2 SD) children participating in an intervention trial and a non-stunted (>-1 SD) comparison group. [‡]SD scores. WISC=Wechsler Intelligence Scale for Children. WAIS=Wechsler Adult Intelligence Scale.

Teleclass broadcast sponsored by GOJO (www.gojo.com)
A Webber Training Teleclass
www.webbertraining.com

Review

Early childhood diarrhoeal diseases and cognition: are we missing the rest of the iceberg?

Jessica MacIntyre¹, Jennifer McTaggart², Richard L. Guerrant³, David M. Goldfarb^{*4,5}

Outline

- Global burden of childhood enteric infections
- New insights from enhanced diagnostic studies
- Examples of efforts to address childhood diarrheal disease

Pediatric Oncology Population

Table 3 Overall Results for BioFire, Luminex, and In-House Testing

First episode per patient	BioFire	Luminex	In house*		
Negative	105	100	152		
Positive	94	99	47		
Targets detected, n (%)					
1	80 (85.1)	80 (80.8)	46 (97.9)		
2	12 (12.8)	11 (11.1)	1 (2.1)		
3	2 (2.1)	7 (7.1)	0		
4	0	1 (1)	0		

^{*}Astrovirus, norovirus I and II, and sapovirus tested by PCR.

J Mol Diagn. 2015 Nov;17(6):715-21

What about high burden settings?

http://worldmapper.org/

Two Large Multi-centre Studies of childhood diarrheal disease

Global Enteric Multicentre Study (GEMS)

 The Interactions of Malnutrition & Enteric Infections: Consequences for Child Health and Development (MAL – ED)

> BILL & MELINDA GATES foundation

Global burden of enteric infections

etiologic spectrum and impact

Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study

Karen L Kotloff, James P Nataro, William C Blackwelder, Dilruba Nasrin, Tamer H Farag, Sandra Panchalingam, Yukun Wu, Samba O Sow, Dipika Sur, Robert F Breiman, Abu S G Faruque, Anita K M Zaidi, Debasish Saha, Pedro L Alonso, Boubou Tamboura, Doh Sanogo, Uma Onwuchekwa, Byomkesh Manna, Thandavarayan Ramamurthy, Suman Kanungo, John B Ochieng, Richard Omore, Joseph O Oundo, Anowar Hossain, Sumon K Das, Shahnawaz Ahmed, Shahida Qureshi, Farheen Quadri, Richard A Adegbola, Martin Antonio, M Jahangir Hossain, Adebayo Akinsola, Inacio Mandomando, Tacilta Nhampossa, Sozinho Acácio, Kousick Biswas, Ciara E O'Reilly, Eric D Mintz, Lynette Y Berkeley, Khitam Muhsen, Halvor Sommerfelt, Roy M Robins-Browne, Myron M Levine

Summary

Background Diarrhoeal diseases cause illness and death among children younger than 5 years in low-income countries. We designed the Global Enteric Multicenter Study (GEMS) to identify the aetiology and population-based burden of paediatric diarrhoeal disease in sub-Saharan Africa and south Asia.

Methods The GEMS is a 3-year, prospective, age-stratified, matched case-control study of moderate-to-severe diarrhoea in children aged 0–59 months residing in censused populations at four sites in Africa and three in Asia. We recruited

Kotloff KL et al. Lancet 2013; 382: 209-22

GEMS case control design

- Cases of mod to severe diarrhea = 9439
- Community controls = 13129

http://medschool.umaryland.edu/GEMS/

Global Enteric Multicenter Study

Pathogens (<u>including</u> Giardia) identified in stool specimens from cases and controls during the first 2 years of GEMS

•					
No. of	4 Africa	n sites	3 Asian sites		
pathogens identified	Cases (%)	Ctrls (%)	Cases (%)	Ctrls (%)	
At least 1	79	71	83	70	
At least 2	37	29	47	32	
At least 3	10	7	16	10	

M. Levine, Ped. Acad. Soc., Boston, 2012

GEMS – main initial findings

- Odds of dying during follow-up were 8.5X higher in children with mod to severe diarrhea as compared with controls
- Case mortality at African sites as high as 7.5%!
- Interventions are needed to target:
 - rotavirus
 - Shigella
 - ST-ETEC
 - Cryptosporidium
 - Typical enteropathogenic E coli Kotloff KL et al. Lancet 2013; 382: 209-22

BROAD MOLECULAR DIAGNOSTIC PANELS

xTAG GPP® assay - Targets

Bacteria and bacterial toxins

- •Salmonella
- •Shigella
- Campylobacter
- •Clostridium difficile Toxin A/B
- •Enterotoxigenic E. coli (ETEC) LT/ST
- •E. coli O157
- •Shiga-like Toxin producing *E. coli* (STEC) stx 1/stx 2
- Vibrio cholerae
- ·Yersinia enterocolitica

Viruses

- •Adenovirus 40/41
- •Rotavirus A
- •Norovirus GI/GII

Parasites

- •Giardia
- •Entamoeba histolytica
- Cryptosporidium

http://www.luminexcorp.com/Products/Assays/ClinicalDiagnostics/xTAGGPP/index.htm

Newer More Sensitive Techniques Enteropathogen Yield with Conventional Testing in Botswana¹ Bacterial Parasitic Mixed ■ None Detected **Enteropathogen Yield with Multiplex** Bacterial Molecular Detection in Botswana² Parasitic Viral Mixed ■ None Detected 1.Rowe J, et al. PLoS One. 2010 June 2;5(6):e10924. 2.Goldfarb DM et al. PAS. Boston 2012.

EDITORIAL COMMENTARY

The Intestinal Pathobiome: Its Reality and Consequences Among Infants and Young Children in Resource-Limited Settings

Edward T. Ryar

- Mean of 4.3 pathogen targets in "healthy" controls
- Concept of "pathogen excess"

Ryan ET J Infect Dis. 2013 Dec 1;208(11):1732-3.

Enteric panels for public health surveillance

- As part of National Enteric Surveillance Program (NESP) in 2012 Nunavut had only reported
 - 2 Campylobacter
 - 8 Salmonella
 - 1 E. coli O157

Source: http://publications.gc.ca/collections/collection_2014/aspc-phac/HP37-15-2012-eng.pdf

Novel Diagnostics - Public Health

old specimens, new tools

Table II. Nanolitre real-time RT-PCR panel results on the detection of food- and water-borne microbial agents in northern communities

		
Microorganiem	Nanolitre PCR positiv	es
Microorganism	(N = 86) (%)	<u></u>
Bacteria		
Campylobacter spp.	6 (7.0)	
Salmonella spp.	6 (7.0)	
Clostridium difficile with toxin B	5 (5.8)	
detected		
Shigella spp.	1 (1.1)	
Parasites		
Cryptosporidium spp.	17 (19.8)	
Giardia spp.	1 (1.1)	
Viruses		
Astroviruses	4 (4.6)	
Noroviruses groups 2	3 (3.5)	
Rotaviruses	1 (1.1)	Goldfarb et al; Int J Circumpolar Health. 2013;72:19

Outline

- Global burden of childhood enteric infections
- New insights from enhanced diagnostic studies
- Examples of efforts to address childhood diarrheal disease

Rotavirus is the **leading cause** of severe gastroenteritis worldwide

Among children <5 years:

- 453,000 deaths
- 37% of deaths attributable to diarrhea
- 5% of all under 5 yr old deaths
- 40% of hospitalizations for diarrhea in Africa

Tate J et al., Lancet Inf Dis, 2012 Mwenda J et al., PIDJ, 2014

Rotavirus vaccination

WHO Recommends Global Use of Rotavirus Vaccines

Decision Could Help Protect Millions of Children in Africa and Asia from Lethal Diarrheal Disease

- Americas and Europe 2006
- Africa and Asia 2009

Scale-up of rotavirus vaccine 81 countries* have introduced RV nationally *As of May 1, 2016 RY or rotavirus vaccine http://sites.path.org/rotavirusvaccine/files/2016/05/PATH-Worldwide-Rotavirus-Vaccine-Introduction-Map-EN-2016.05.01 blank.ipg

Botswana RV Vaccine Impact Study

- Botswana among first African countries to introduce RV vaccine in 2012
- High in hospital gastroenteritis mortality

Pediatr Infect Dis J. 2013 May;32(5):570-2

Teleclass broadcast sponsored by GOJO (www.gojo.com)
A Webber Training Teleclass
www.webbertraining.com

Teleclass broadcast sponsored by GOJO (www.gojo.com)
A Webber Training Teleclass
www.webbertraining.com

Hospital Acquired GE in Botswana

- 4/32 (12%) in-hospital mortality at one site
- Rotavirus 2nd leading pathogen @ 19%

Welch H et al. Ped Acad Soc Mtg Vancouver 2014

WaSH Interventions

Two major trials ongoing

- •WASH Benefits Bangladesh
- •WASH Benefits Kenya
- Sanitation Hygiene Infant Nutrition Efficacy trial
- Zimbabwe

Causes of intestinal damage in rural Zimbabwean infants

	% houses with E coli + sample	Mean E Coli cfu/g	Mean E Coli "per serving size" cfu/g
Infant food	0%	0	0
Drinking water	54%	2	800
Wet shaded soil	60-80%	69	2,100
Chicken feces	100%	10,000,000	10,000,000

Am J Trop Med Hyg. 2013 Oct;89(4):709-16.

Protective play area

Teleclass broadcast sponsored by GOJO (www.gojo.com)
A Webber Training Teleclass
www.webbertraining.com

"Nicole"

- Has kwashiokor (edematous malnutrition) and admitted with acute diarrhea
- Has a ~ 1/4 chance of dying¹ during this admission

1. Pernica JM et al., JPIDS, in press

"Nicole"

- What can we do to ensure that she has the best outcome possible?
 - Survival
 - Long-term growth and development

Management of diarrhoea

- oral rehydration therapy key to preventing mortality
- zinc therapy reduces diarrhoea persistence in children > 6 months
- is there anything else?

Specific therapy

- majority of acute gastroenteritis presumed to be viral
 - WHO recommends treatment with antibiotics only for bloody dysentery
- is this assumption true in LMICs?

Botswana 2011-2013

- n=671 children admitted to hospital with gastroenteritis
- median age 8.3 months, 11% severe acute malnutrition
- 26 deaths (case-fatality rate 3.9%)

Pernica JM et al. J Pediatr Infect Dis Soc (in press)

Blood in stools

- presence of Campylobacter/Shigella/ enterotoxigenic E. coli in stool associated with death (risk ratio 2.61, 95% CI 1.22-5.58)
 - magnitude of effect unchanged after stratifying by presence of blood in stools

Study design

- experimental arms:
 - 1. rapid testing + treatment (if indicated) + probiotic
 - 2. rapid testing + treatment (if indicated) + placebo
 - 3. delayed testing + probiotic
 - 4. delayed testing + placebo
- probiotic: Lactobacillus reuteri 5x10⁸ cfu/mL daily x 60 days

Interventions

- all participants treated as per standard of care (fluid resuscitation, zinc) + enteric specimens obtained
- rapid-testing groups
 - stool testing results available same-day
 - Shigella/Campylobacter/ETEC/EPEC: azithromycin
 - Cryptosporidium: nitazoxanide
- delayed-testing groups
 - swabs batched and run after the trial

Results – Pilot Study (n=73)

group	OR of recurrence of diarrhoea by 60 days (95% CI)	p
Delayed testing + placebo	(ref)	
Rapid testing + placebo	0.45 (0.12 to 1.79)	0.26
Delayed testing + <i>L. reuteri</i>	0.10 (0.01 to 0.93)	0.04
Rapid testing + L. reuteri	0.07 (0.01 to 0.61)	0.02
	Pernica JM <i>et al.</i> IDWeek San	Diego 2015

Results – Pilot Study (n=73)

group	difference in HAZ @ 60 d adjusted for baseline (95% CI)	р
Delayed testing + placebo	(ref)	
Rapid testing + placebo	+ 0.33 (-0.24 to 0.89)	NS
Delayed testing + L. reuteri	+ 0.51 (-0.08 to 1.11)	NS
Rapid testing + L. reuteri	+ 0.61 (0.09 to 1.13)	0.02

Pernica JM et al. IDWeek San Diego 2015

Teleclass broadcast sponsored by GOJO (www.gojo.com)
A Webber Training Teleclass
www.webbertraining.com

"Nicole" in follow up with her mother

Acknowledgements

University of Botswana

- Dr. Loeto Mazhani
- **Margaret Mokomane**
- Dr. Isaac Quaye (now U of Nam.) Banno Moorad
- **Moses Vuriya**
- Dr. B.A. Gashe
- Dr. I. Kasvosve

McMaster University

- Dr. Marek Smieja
- **Dr. Jeffrey Pernica**
- **Dr. James Mahony**
- **Sylvia Chong**
- **Kathy Luinstra**

Botswana-UPenn Partnership

- Dr. Andrew Steenhoff
- Dr. Harvey Friedman
- Kwana Lechiile

Nunavut Dept of Health

- -Dr. Maureen Baikie
- -Dr. Amber Miners

CDC

- -Dr. Umesh Parashar
- -Dr. Paul Gastanaduy
- -Dr. J. Tate

Public Health Agence de santé publique du Canada

Thank you!

THANKS FOR YOUR SUPPORT

Thanks to Teleclass Education

PATRON SPONSORS

