

Gastrointestinal Endoscopes: A Need to Shift from Disinfection to Sterilization

- Review the CRE/MDR outbreaks associated with ERCP procedures
- Evaluate the cause of endoscope-related outbreaks
- Discuss the alternatives exist today that might improve the safety margin associated with duodenoscope reprocessing
- Describe how to prevent future outbreaks associated with duodenoscopes and other GI endoscopes

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

"Superbug" Outbreaks

- Cedars-Sinai Medical Center, UCLA Ronald Reagan Medical Center, University of Pittsburgh Medical Center, Virginia Mason Medical Center, tertiary care facility in NE Illinois, Wisconsin medical center
- ABC, CBS, NBC, CNN, New York Times, LA Times
- Lawmakers asked Congress why the FDA "didn't move more quickly and aggressively to ensure patient safety"

5

6

GI ENDOSCOPES

- Widely used diagnostic and therapeutic procedure (~20 million GI procedures annually in the US)
- GI endoscope contamination during use (10⁷⁻¹⁰ in/10⁵ out)
- Semicritical items require high-level disinfection minimally
- Inappropriate cleaning and disinfection has lead to crosstransmission
- In the inanimate environment, although the incidence remains very low, endoscopes represent a significant risk of disease transmission. In fact, more outbreaks of infection associated with endoscopes than any reusable medical device in healthcare.

Transmission of Infection by Endoscopy Kovaleva et al. Clin Microbiol Rev 2013. 26:231-254					
Scope	Outbreaks	Micro (primary)	Pts Contaminated	Pts Infected	Cause (primary)
Upper GI	19	Pa, H. pylori, Salmonella	169	56	Cleaning/Dis- infection (C/D)
Sigmoid/ Colonoscopy	5	Salmonella, HCV	14	6	Cleaning/Dis- infection
ERCP	23	Ра	152	89	C/D, water bottle, AER
Bronchoscopy	51	Pa, Mtb, Mycobacteria	778	98	C/D, AER, water
Totals	98		1113	249	
Decederaut	Hennels alete (f.e.).	minated definitionalise of	encipted with places	an disinfaction AFR	

water and drying would eliminate about 85% of the outbreaks.

Reprocessing Failures Have Led to Patient Notifications and Bloodborne Pathogens Testing Rutala WA, Weber DJ. Infect Control Hosp Epidemiol 2007;28:146-155

Instruments Resulting in Patie	ent Notification	
Location or institution, year	Instrument involved	No. of persons exposed
Sacramento, CA, 2002	Endoscope	750
Toronto, ON, 2003	Endoscope	146
Seattle, WA, 2004	Endoscope	600
Sacramento, CA, 2004	Endoscope	1,331
San Francisco, CA, 2004	Endoscope	2,000
Long Island, NY, 2004	Endoscope	177
Charleston, NC, 2004	Endoscope	1,383
Toronto, ON, 2003	Prostate biopsy probe	900
Pittsburgh, PA, 2005	Endoscope	200
Leesburg, VA 2005	Endoscope	144
San Diego, CA, 2006	Endoscope	300
Augusta, ME, 2006	Prostate biopsy needle	481
Dept Veterans Affairs, 2006	Prostate biopsy equipment	2,075
San Diego, CA, 2006	Surgical instrument	82
NOTE. Modified from a presen Annual Conference and Internati	tation by Douglas Nelson, MD, ional Meeting of the Associatio	at the 33rd n for Pro-

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

Endemic Transmission of Infections Associated with GI Endoscopes May Go Unrecognized

<section-header><section-header><section-header><text><text><text><text><text><text><text>

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

Endosc Ofstead , We	cope Reprocessing M tzler, Snyder, Horton, Gastro Nursing	ethods 2010; 33:204
	Coi L. Céread, MSPH Harry P. Wenke, MD, MSPH Alyce R. Snyket BA Rebeca A. Horon, DPT Endoscope Reprocessing Methods	
	A Prospective Study on the Impact of Human Factors and Automation	
	ABSTRACT The mitrix case of enfoccopy-associated intectors in bilars to athere to reproceering additives. More information adout tobics in procing complexes an exact to appoint the divergence of effective information. The purpose of the mitrix documents of adout the information of the purpose of the mitrix of the constraints of health tasks. Data was collected of this mitratives, survey, and direct charan fails. White mitration constraints of and procedure ware to a cell of the direct margines all mode the purpose a profession, and and direct tasks and the analysis of the direct margines and mitration before and from the direct tasks and the direct marks and a surveines of the direct tasks and the processors (and the direct tasks and the direct tas	15

Endos Ofstead , W	COPE Reprocessir	ng Methods Nursing 2010; 33:204	
Performed all 12 steps of processed using AER	with only 1.4% of endoscopes usin TABLE 3. Documented During Manual Cleani Disinfection Reprocessi	g manual versus 75.4% of thos Completion of Steps ing With High-Level ng	ie
	Observed Activity	Steps Completed (%) (<i>n</i> = 69)	
	Leak test performed in clear water	77	
	Disassemble endoscope completely	100	
	Brush all endoscope channels and components	43	
	Immerse endoscope completely in detergent	99	
	Immerse components completely in detergent	99	
	Flush endoscope with detergent	99	16

Transmission of Infection by Endoscopy Kovaleva et al. Clin Microbiol Rev 2013. 26:231-254

Scope	Outbreaks	Micro (primary)	Pts Contaminate d	Pts Infected	Cause (primary)
Upper GI	19	Pa, H. pylori, Salmonella	169	56	Cleaning/Dis- infection (C/D)
Sigmoid/ Colonoscopy	5	Salmonella, HCV	14	6	Cleaning/Dis- infection
ERCP	23	Ра	152	89	C/D, water bottle, AER
Bronchoscopy	51	Pa, Mtb, Mycobacteria	778	98	C/D, AER, water
Totals	98		1113	249	
Based on outbr water and dryin	eak data, if elim g would elimina	inated deficiencies ass te about 85% of the or	sociated with cleanir utbreaks.	ng, disinfection, AEF	R , contaminated 18

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

	Gastroscope, log ₁₀ CFU	Colonoscope, log ₁₀ CFU
After procedure	6.7	8.5 Gastro Nursing 1998;22:63
	6.8	8.5 Am J Inf Cont 1999;27:39
		9.8 Gastro Endosc 1997;48:137
After cleaning	2.0	2.3
	4.8	4.3
		5.1

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row><table-row>

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

FEATURES OF ENDOSCOPES THAT PREDISPOSE TO DISINFECTION FAILURES

- Heat labile
- Long, narrow lumens
- Right angle bends
- Rough or pitted surfaces
- Springs and valves
- Damaged channels may impede microbial exposure to HLD
- Heavily contaminated with pathogens, 10⁷⁻¹⁰
- Cleaning (2-6 log₁₀ reduction) and HLD (4-6 log₁₀ reduction) essential for patient safe instrument

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

Why ERCP (Endoscopic Retrograde Cholangiopancreatography)?

- More than 500,000 ERCP procedures using duodenoscopes are performed in the US annually
- Procedure is the least invasive way of draining fluids from the pancreatic and biliary ducts blocked by cancerous tumors, gallstones or other conditions
- Complex design of duodenoscopes causes challenges for cleaning and HLD. Some parts of the scope are extremely difficult to assess and effective cleaning of all areas of the duodenoscope may not be possible.

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

Gastrointestinal Endoscopes: A Need to Shift from Disinfection to Sterilization Rutala WA, Weber DJ, Infect Control Hosp Epidemiol 2015;36:643-648

- Review the CRE/MDR outbreaks associated with ERCP procedures
- Evaluate the cause of endoscope-related outbreaks
- Discuss the alternatives exist today that might improve the safety margin associated with duodenoscope reprocessing
- Describe how to prevent future outbreaks associated with duodenoscopes and other GI endoscopes

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

- No single, simple and proven technology or prevention strategy that hospitals can use to guarantee patient safety
- Of course, must continue to emphasize the enforcement of evidenced-based practices, including equipment maintenance and routine audits with at least yearly competency testing of reprocessing staff
- Must do more or additional outbreaks will continue

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

A Webber Training Teleclass

41

Method	Advantages	Disadvantages	
HLD with ETO, Microbiologic surveillance	 Major endoscope manufacturer offers ETO as sterilization option Should be used after standard high-level disinfection Some data demonstrate reduced infection risk with HLD followed by ETO Single-dose cartridge and negative- pressure chamber minimizes the potential for gas leak and ETO exposure Simple to operate and monitor Compatible with most medical materials 	 Requires aeration time to remove ETO residue Only 20% of US hospitals have ETO on-site Lengthy cycle/aeration time No microbicidal efficacy data proving SAL 10⁻⁶ achieved Studies question microbicidal activity in presence of organic matter/salt ETO is toxic, a carcinogen, flammable May damage endoscope 	42

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

Method	Advantages	Disadvantages
Double HLD, Microbiologic surveillance	 HLD inactivate MDR organisms including CREs Wide availability of HLD A second HLD cycle may reduce or eliminate microbial contaminants remaining from first cycle 	 Based on recent ERCP outbreaks, infection risk related to device complexity and microbial load Some HLD (e.g., aldehydes) may cross- link proteins

	Method HLD with scope quarantine until negative culture	Advantages HLD inactivate MDR organisms including CREs Microbiologic surveillance offered as supplement by CDC Data demonstrate reduced infection risk 	 Disadvantages Based on recent ERCP outbreaks, infection risk related to device complexity and microbial load Sensitivity of microbiologic surveillance unknown 48-72 hours before culture results known No cutoff to define effective disinfection
--	--	--	--

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

D1

(111 B

Method	Advantages	Disadvantages
Liquid Chemical Sterilant Processing System using Peracetic Acid, rinsed with extensively treated potable water, Microbiologic surveillance	 HLD/chemical sterilant inactivate MDR organisms including CREs Offered as liquid chemical sterilant processing option 	 Based on recent ERCP outbreaks, infection risk related to device complexity and microbial load Not considered sterile as not a terminal sterilization process and scope rinsed with extensively treated water Unclear if peracetic acid will penetrate crevices in elevator channel and inactivate

Method	Advantages	Disadvantages
HLD, Microbiologic surveillance	 HLD inactivate MDR organisms including CREs Microbiologic surveillance offered as supplement by CDC 	 Based on recent ERCP outbreaks, infection risk related to device complexity and microbial load No data demonstrating reduced infection risk Sensitivity of microbiologic surveillance unknown 48-72 hours before culture results known No consensus regarding sampling scheme, 100% or 10% of scopes per week/per month? No cutoff to define effective disinfection (0 GNR?)

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

Method	Advantages	Disadvantages
HLD, ATP only (not listed as an enhanced method for reprocessing endoscope)	 HLD inactivate MDR organisms including CREs Real-time monitorin tool Simple to conduct Detects organic residue 	 Based on recent ERCP outbreaks, infection risk related to device complexity and microbial load No data demonstrating reduced infection risk Does not detect microbial
		 microbial contamination ATP not validated as risk factor for patient- to-patient transmission Unknown cut-off level

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

49

Surveillance for Bacterial Contamination of Duodenoscopes after Reprocessing www.cdc.gov

- No requirement to perform regular surveillance cultures as part of their response to the issue
- Method intended to culture bacteria from reprocessed duodenoscopes (after drying) specifically from the distal end and instrument channel
- Samples should be collected by personnel familiar with the instrument
- ASM recommends that routine duodenoscope cultures not be performed in a clinical diagnostic laboratory

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

Surveillance for Bacterial Contamination of Duodenoscopes after Reprocessing Questions

- What cutoff should be used to define proper disinfection (0 CFUs?)
- Should there be a separate cutoff based on relatively nonvirulent pathogens?
- If a hospital cultures 2 duodenoscopes of 4 and 1 is positive, do they reprocess all 4 duodenoscopes as 50% positive?
- If a hospital does periodic microbiologic culturing and 20% of sampled endoscopes are positive, what actions should be undertaken (e.g., patient notification with an offer of BBP testing, stool exam for CRE)?
- Trigger based on level of contamination or frequency of contamination?
- Answer: Until evidence-based guidelines, hospitals should base their decisions on best available information (e.g., clinical risk) and what is feasible.

Adenosine Triphosphate (ATP) Validation Alfa et al. Am J Infect Control 2013;41:245

- Validated as a monitoring tool for assessing cleaning because it detects organic residuals
- ATP is not a good indicator of microbial contamination and has not been validated as a method to assess the risk of patient-to-patient transmission
- ATP <200 RLU benchmark for clean, equates to <4 log₁₀ CFUs/cm² or 10⁶ CFUs per endoscope
- Thus, an endoscope assessed as clean using ATP could still have a significant microbial load (e.g., 10⁶) 52

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

Potential Future Methods to Prevent GI-Endoscope Related Outbreaks

Rutala WA, Weber DJ. Infect Control Hosp Epidemiol 2015;36:643-648

- Steam sterilization of GI endoscopes
- New low temperature sterilization methods proving SAL 10⁻⁶ achieved
- Disposable sterile GI endoscopes
- Improved GI endoscope design (to reduce or eliminate challenges listed earlier)
- Use of non-endoscope methods to diagnosis or treat disease (e.g., capsule endoscopy, blood tests to detect GI cancer, stool DNA test)

58

GI Endoscopes: Shift from Disinfection to Sterilization Rutala, Weber. JAMA 2014. 312:1405-1406

EDITORIAL

Editorials represent the opinions of the authors and JAMA and not those of the American Medical Association

Gastrointestinal Endoscopes A Need to Shift From Disinfection to Sterilization?

William A. Rutala, PhD, MPH; David J. Weber, MD, MPH

More than 10 million gastrointestinal endoscopic procedures are performed annually in the United States for diagnostic pur- mucous membranes or nonintact skin, and require at least highposes, therapeutic interventions, or both.¹ Because gastrointestinal endoscopes contact mucosal surfaces, use of a contaminated endoscope may lead to patient-to-patient transmission bacterial spores. Because flexible gastrointestinal endoscopic of potential pathogens with a subsequent risk of infection.¹

ings from their investigation of a cluster of New Delhi metallo- are possible.³ However, no low-temperature sterilization techβ-lactamase (NDM)-producing Escherichia coli associated with nology is US Food and Drug Administration (FDA)-cleared for gastrointestinal endoscopy that occurred from March 2013 to gastrointestinal endoscopes such as duodenoscopes. July 2013 in a single hospital in

d article page 1447

First, endoscopes are semicritical devices, which contact level disinfection.^{3,4} High-level disinfection achieves complete elimination of all microorganisms, except for small numbers of instruments are heat labile, only high-level disinfection with In this issue of JAMA, Epstein and colleagues² report find- chemical agents or low-temperature sterilization technologies

Second, more health care-associated outbreaks and clusnortheastern Illinois. During ters of infection have been linked to contaminated endothe 5-month period, 9 pa-scopes than to any other medical device.^{3,5} However, until no

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

Hosted by Prof. Jean-Yves Maillard, University of Cardiff, UK www.webbertraining.com

 Only when we implement new technologies (LTST proving SAL 10⁻⁶ achieved, steam-sterilization of GI endoscopes, disposable sterile GI endoscopes, non-endoscopic methods) will we eliminate the risk of infection.

66

