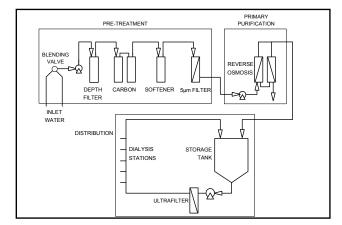
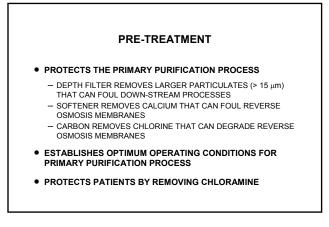

CONTAMINANT	SOURCE	ADVERSE EVENT
ALUMINUM	MUNICIPAL WATER	ENCEPHALOPATHY, BONE DISEASE, ANEMIA
CHLORAMINES	MUNICIPAL WATER	HEMOLYSIS
FLUORIDE	MUNICIPAL WATER	FATAL ARRHYTHMIA, BONE DISEASE (?)
CYANOTOXIN	SOURCE WATER	LIVER FAILURE
NITRATES	SOURCE WATER	ANEMIA
ENDOTOXIN	DIALYSIS UNIT	PYROGENIC REACTIONS, CHRONIC INFLAMMATION
COPPER	DIALYSIS UNIT	HEMOLYSIS, NAUSEA, VOMITING
ZINC	DIALYSIS UNIT	HEMOLYSIS, NAUSEA, VOMITING
CALCIUM, MAGNESIUM	SOURCE WATER, MUNICIPAL WATER	NAUSEA, VOMITING

ANEMIA OR APPARENT ERYTHROPOIETIN RESISTANCE

- CHLORAMINES
 - OXIDIZES HEMOGLOBIN TO METHEMAGLOBIN
 INHIBITS ANTIOXIDANT PATHWAYS
- COPPER
 - INHIBITS ANTIOXIDANT PATHWAYS
 - DECREASES RBC DEFORMABILITY
- ZINC
- ALUMINUM
 - DECREASES HEMOGLOBIN SYNTHESIS
 - INTERFERES WITH IRON METABOLISM





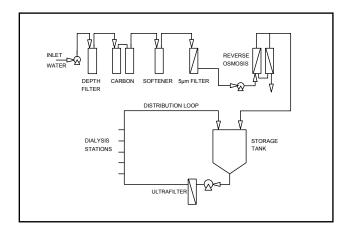
WATER TREATMENT SYSTEM

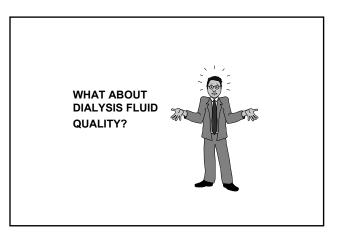
- REQUIRED FOR ALL DIALYSIS FACILITIES
- MUST PRODUCE WATER OF APPROPRIATE QUALITY FROM THE WORST CASE FEED WATER
- MUST MEET THE PEAK DEMAND FOR WATER (SOME EXCESS CAPACITY IS DESIRABLE)
- SHOULD BE DESIGNED FOR EASE OF MAINTENANCE

PURIFICATION PROCESSESPROCESSCONTAMINANTCARBON ADSORPTIONCHLORAMINES, ORGANICSSOFTENERCALCIUMREVERSE OSMOSISIONIC CONTAMINANTS,
BACTERIA, ENDOTOXINDEIONIZATIONIONIC CONTAMINANTSULTRAFILTRATIONBACTERIA, ENDOTOXIN

REMOVAL OF CHLORAMINES

- CARBON ADSORPTION WITH GRANULAR ACTIVATED CARBON OR CATALYTIC CARBON IS GENERALLY THE MOST EFFECTIVE MEANS OF REMOVING CHLORAMINES
- CARBON ADSORPTION MAY NOT BE EFFECTIVE UNDER RARE CIRCUMSTANCES:
 - HIGH LEVELS OF N-CHLORAMINES
 - USE OF ORTHOPHOSPHATE TO REDUCE LEAD AND COPPER LEVELS IN THE MUNICPAL WATER
 - HIGH pH IN THE MUNICIPAL WATER


UNDER THESE CIRCUMSTANCES, CARBON ADSORPTION MAY NEED TO BE SUPPLEMENTED; FOR EXAMPLE, BY INJECTION OF METABISULPHITE


PRIMARY PURIFICATION

REVERSE OSMOSIS versus ION EXCHANGE

REVERSE OSMOSIS

- REMOVES A WIDE RANGE OF IONIC AND NON-IONIC CONTAMINANTS (DOES
- PROVIDES A BARRIER AGAINST MICROBIOLOGICAL CONTAMINANTS
 GENERALLY REQUIRES PRE-TREATMENT OF FEED WATER (CALCIUM, CHLORNE, COLLOIDS)
- SIGNIFICANT CAPITAL COST, BUT LOW OPERATING COST
- ION EXCHANGE
 - DOES NOT REMOVE NON-IONIC CONTAMINANTS (MAY LIMIT AI REMOVAL)
 HAS A FINITE CAPACITY
 - PROMOTES BACTERIAL PROLIFERATION
 - RISK OF ACUTE FLUORIDE TOXICITY IF ALLOWED TO EXHAUST
 - LOW CAPITAL COST, BUT SIGNIFICANT OPERATING COST

DIALYSIS FLUID QUALITY

AAMI RD52 - DIALYSATE FOR HEMODIALYSIS

PROPOSED LIMITS FOR CHEMICAL CONTAMINANTS

• SAME AS FOR WATER (RD62:2001)

PROPOSED LIMITS FOR MICROBIOLOGICAL CONTAMINANTS

SEPTICEMIA AND PYROGENIC REACTIONS

CAN CAUSE SEPSIS CHARACTERIZED BY WATER-

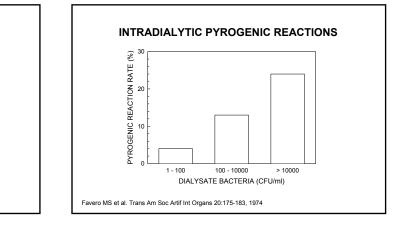
FRAGMENTS MAY CROSS DIALYZER MEMBRANES
FRAGMENTS MAY CONTAMINATE BLOOD COMPARTMENT DURING
PROCESSING OF DIALYZER FOR REUSE
CAUSE PYROGENIC REACTIONS CHARACTERIZED BY

SHAKING CHILLS, FEVER AND HYPOTENSION

 DO NOT CROSS DIALYZER MEMBRANES
 MAY INFECT BLOOD COMPARTMENT DURING PROCESSING OF DIALYZER FOR REUSE

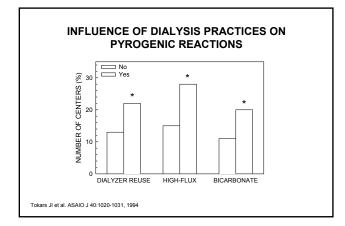
BORNE ORGANISMS

- BACTERIA: 200 CFU/ml ACTION LEVEL: 50 CFU/ml
- ENDOTOXIN: 2 EU/ml
 ACTION LEVEL: 1 EU/ml


BACTERIA

ENDOTOXIN

DIALYSIS FLUID


DEFINITIONS OF MICROBIOLOGICAL QUALITY

	Bacteria (cfu/ml)	Endotoxin (EU/ml)
AAMI Recommended Practice (Proposed)	200	2
ERA-EDTA Best Practice Guidelines	100	0.25
Ultrapure	0.1	<0.03
Sterile	10 ⁻⁶	<0.03

Hosted by Paul Webber paul@webbertraining.com www.webbertraining.com

page 4

	-
INCORRECT GERMICIDE CONCENTRATION	5/10
INAPPROPRIATE GERMICIDE	2/10
USE OF TAP WATER TO CLEAN OR RINSE DIALYZERS	3/10
USE OF MULTIPLE GERMICIDES	1/10
USE OF WATER NOT MEETING AAMI STANDARDS	10/10

CHRONIC INFLAMMATION

 CYTOKINE-INDUCING SUBSTANCES (ENDOTOXIN FRAGMENTS, PEPTIDOGLYCANS, MURAMYL DIPEPTIDES, EXOTOXINS)

CROSS LOW- AND HIGH-FLUX MEMBRANES

- STIMULATE MONONUCLEAR CELL CYTOKINE PRODUCTION
- I ARE ASSOCIATED WITH INCREASED LEVELS OF ACUTE PHASE PROTEINS (C-REACTIVE PROTEIN)
- PRODUCE A MICROINFLAMMATORY STATE THAT MAY PLAY A ROLE IN $\beta_2\text{-}\text{MICROGLOBULIN}$ AMYLOIDOISIS, ATHEROSCLEROSIS, AND MALNUTRITION


RISK OF DEVELOPING DIALYSIS-ASSOCIATED AMYLOIDOSIS WITH CONTAMINATED DIALYSIS FLUID

	ODDS RATIO (95% CI)
β2-MICROGLOBULIN AMYLOIDOS	S 3.308 (1.45 – 6.35) p = 0.031
BONE CYSTS	1.85 (1.00 – 3.42) p = 0.047
CARPAL TUNNEL SYNDROME	2.86 (1.35 – 6.07) p = 0.006
ARTHROPATHY	9.04 (2.06 – 39.6) p = 0.004
N = 89 CC 10 YEAR FOLLOW-UP	NTAMINATED DIALYSIS FLUID: 550 CFU/ml STANDARD DIALYSIS FLUID: 65 CFU/ml

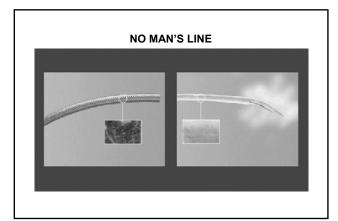
Schiffl H et al. Nephrol Dial Transplant 15:840-845, 2000

POTENTIAL ADVANTAGES OF WATER AND DIALYSIS FLUID OF HIGH MICROBIOLOGICAL PURITY

- LESS INFLAMMATORY STIMULUS
- REDUCED INCIDENCE OF β₂-MICROGLOBULIN AMYLOID DISEASE
- IMPROVED RESPONSIVENESS TO **ERYTHROPOIETIN**
- IMPROVED NUTRITIONAL STATUS
- BETTER PRESERVATION OF RESIDUAL RENAL FUNCTION

Carr J. Hospital Infections Program, CDCP

	CFU/cm ²	TOTAL BACTERIA/cm
TUBING FROM		
WATER PATH	23	1.4 x 10 ⁵
BICARBONATE PATH	17	1.54 x 10 ⁵
DIALYSIS FLUID PATH	12	3.2 x 10 ⁵
DIALYSIS FLUID	0	0



DESIGN TO LIMIT BACTERIAL PROLIFERATION

- USE A DISTRIBUTION LOOP
- AVOID STAGNANT FLOW
 NO DEAD ENDS, PRESSURIZING TANKS, OR MULTIPLE BRANCHES
 - SIZE PIPES TO MAINTAIN VELOCITY > 3 ft/sec
- INCLUDE BACTERIAL CONTROL DEVICES
 ULTRAFILTERS
 - ON-LINE HOT WATER DISINFECTION
- IF A STORAGE TANK IS USED
 - I MINIMUM SIZE NEEDED TO ENSURE TURN-OVER OF WATER
 - Π TIGHT-FITTING LID WITH A HYDROPHOBIC 0.2 μm FILTER AIR VENT
 - E CONICAL BOTTOM WITH DRAIN AT LOWEST POINT
 - ADEQUATE DISINFECTION MECHANISM

DISINFECTION

- DISINFECTION SCHEDULES SHOULD BE DESIGNED TO PREVENT, NOT ELIMINATE, CONTAMINATION WITH BACTERIA AND BIOFILM.
- DISINFECTION SHOULD INCLUDE THE WATER STORAGE AND DISTRIBUTION SYSTEM, CONCENTRATE PREPARATION AND DISTRIBUTION SYSTEM, AND THE PROPORTIONING SYSTEM.
- MONITORING WITH CULTURES AND ENDOTOXIN LEVELS IS INTENDED TO VERIFY THE ADEQUACY OF DISINFECTION, NOT INDICATE WHEN DISINFECTION IS NEEDED.

MONITORING FOR COMPLIANCE WITH AAMI STANDARDS

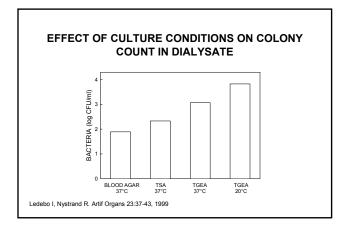
CULTURING CONDITIONS

TIME	
TEMPERATURE	
MEDIUM	
TECHNIQUE	

TECHNIQUE

MEMBRANE FILTER, SPREAD PLATE TRYPTIC SOY AGAR OR EQUIVALENT 35 - 37°C 48 hours

LIMULUS AMEBOCYTE LYSATE ASSAY


ALTERNATIVES TO SPREAD-PLATE CULTURES

CALIBRATED LOOP

- STANDARD TECHNIQUE IN CLINICAL LABORATORIES
- SAMPLE VOLUME IS TOO SMALL FOR REQUIRED SENSITIVITY
 SPECIFICALLY PROHIBITED FOR DIALYSIS APPLICATIONS
- SPECIFICALLY PROHIBITED FOR DIALYSIS APPLICATION
- PADDLES
 - CONVENIENT FOR ON-SITE TESTING
 - REQUIRE A MAGNIFIER AND LIGHT-SOURCE FOR ACCURATE ENUMERATION OF COLONIES
 - MAY GIVE AN APPARENT FALSE NEGATIVE WITH HEAVILY CONTAMINATED SAMPLES

MEMBRANE FILTRATION

- VERY SENSITIVE
- REQUIRES FILTRATION SYSTEM AND LARGE SAMPLE VOLUMES

SUMMARY

- HEMODIALYSIS PATIENTS ARE HIGHLY SENSITIVE TO CONTAMINANTS IN THE WATER USED FOR DIALYSIS FLUID AND DIALYZER REPROCESSING
- WATER CONTAMINANTS CAN CAUSE MANY PROBLEMS COMMON IN HEMODIALYSIS PATIENTS, INCLUDING ANEMIA, BONE DISEASE, AND INTRA-DIALYTIC NAUSEA AND VOMITING
- NO WATER SUPPLY CAN BE CONSIDERED SUITABLE FOR DIALYSIS APPLICATIONS WITHOUT PURIFICATION
- AVOIDING COMPLICATIONS FROM WATER CONTAMINANTS REQUIRES CONSTANT ATTENTION TO WATER QUALITY

Continuing Education Certificate

To find out how to get a Continuing Education Certificate for this teleclass contact . . .

certificates@webbertraining.com