

Acinetobacter susceptibility to abt & disinfectants

Table 3. Correlation between MICs of disinfectants and antimicrobial agents

Antimicrobial agent	Category ^a	Number of strains	Median MIC (mg/L)	CHX	BZK	BZT	ADH
CAZ	S	247	4	0.336 (P<0.01)	0.300 (P<0.01)	0.193 (P<0.01)	0.292 (P<0.01)
	Ι	13	16				
	R	23	64				
IPM	S	268	0.5	0.095 (P=0.114)	0.130 (P<0.05)	0.035 (P=0.559)	0.008 (P=0.900)
	I	2	8				
	R	13	32				
CIP	S	252	0.25	0.224 (P<0.01)	0.319 (P<0.01)	0.128 (P<0.05)	0.287 (P<0.01)
	Ι	4	2				
	R	27	32				
AMK	S	268	2	0.189 (P<0.01)	0.193 (P<0.01)	0.142 (P<0.05)	0.223 (P<0.01)
	Ι	4	32				
	R	11	64				

^aSusceptibilities of 283 isolates of *Acinetobacter* spp. to CAZ, IPM, CIP and AMK were categorized into susceptible (S), intermediate (I) and rein accordance with CLSI criteria.

J Antimicrob Chemother 2010; 65: 1975-1983

Mecha The p but no	ation to chlorhexidin anism: mutation of re hoPQ (from CHG a ot chlorhexidine re	e resistance led to colistin egulator genes (<i>smvR</i>) next dapted strain) insertion in sistance.	resistance in t to MFS regi nto <i>K pneun</i>	5 of 6 strains ulatory efflux noniae resul	s of <i>K pneun</i> pump <i>smvA</i> ted in colist	noniae. gene in resistan
TABLE 3 M	AIC and MBC values of CH	D and CST after plasmid compleme	ntation ^a		CST	
Strain	Plasmid	Description	MIC (mg/liter)	MBC (mg/liter)	MIC (mg/liter)	MBC (mg/lite
M109 CA	pACYC-184 alone	Empty vector	32	32	2-4	2–4
	pACYC M3 smvR WT	smvR from strain M3	8	8	2	2
	pACYC M3 smvR CHD	smvR from strain M3 CA	32	32	2-4	2–4
	pACYC 13443 smvR WT	smvR from strain NCTC 13443	8	8	2	2
	pACYC 13443 smvR CHD	smvR from strain NCTC 13443 CA	32	32	2–4	2–4
	pACYC phoPQ WT	phoPQ from strain NCTC 13443	32–64	32–64	1–2	2
	pACYC phoQ A20P	phoPQ from strain NCTC 13443 CA	<mark>32–64</mark>	<mark>64</mark>	<mark>64</mark>	<mark>64–>64</mark>
M109 WT	pACYC-184 alone	Empty vector	8–16	8–16	0.5–1	2–4
	pACYC <i>phoP</i> Q WT	phoPQ from strain NCTC 13443	8–16	8–32	0.5–1	2–4
	pACYC <i>pho</i> Q A20P	phoPQ from strain NCTC 13443 CA	8–16	16–32	32–64	64
25	pACYC-184 alone	Empty vector	8–16	8-16	0.5	2-4
	pACYC phoPQ WT	phoPQ from strain NCTC 13443	8–16	16-32	0.5-1	1-4

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item>

Quaternary Ammonium compounds (QAC	2)
Uses: household, cosmetics, perfume	
 238 Clinical b/c isolates of S aureus and S epidermidis from children 	
 In 78 BC^r staphylococcal isolates, resistance to QAC- 50% 	Acne treatment
 plasmids- qacA orB (qacA/B), qacC, blaZ, and tetK 	Inactive ingredients, henzlkalonimum
 Qac linkage between disinfectants and penicillins in clinical isolates in Norway 	chloride, other QAC
Infection Control Africa Network Antimicrob. Agents Chemother. 2002 vol. 46 no. 92	797-2

Table 8 Bac	terial mecha	nisms of resistance to	biocides	
Mechai	nisms	Nature	Level of susceptibility to other biocides ¹	Cross- resistance
Permeability		intrinsic (acquired)	no	yes
Efflux		intrinsic/acquired	reduced	yes
Degradation Mutation (target site)		acquired/intrinsic reduced		no
		acquired	reduced	no ²
Phenotypic cha	nge	Following exposure	reduced	yes
Induction (stres	s response)	Following exposure	variable	yes
¹ to other biocide	s - level of susc	eptibility defined accordin	g to the concentration of	biocides
² not to other bio	cide, but cross-	resistance with specific an	tibiotics	
	The induc	tion of bacterial res	istance has been d	escribed in a
	all biocide	es, such as quaterna	ry ammonium con	npounds,
Infection Control	bisbiguan	ides and phenolics,	as well as glutara	ldehyde.

Kegi	liations adopted	1 2009		
Directorate-General for Health & Consumers	Mea	asuring resistance		
	Table 7 Methodologi	es to measure bacterial resista	ance	
Scientific Committee on Emerging and Newly Identified Health Risks	Methodology		Measuring	
SCENIHR		Resistance to a biocide	Change in phenotypes	
	MBCs	Yes	Yes	
Assessment of the Antibiotic Resistance Effects of Biocides	Bactericidal activity	Yes	Yes	
	Inactivation kinetic	Yes	Yes	
	MICs	No*	Yes	
scientific Committees	Growth kinetic	No	Yes	
Infection Control	* An increase in MIC mig	ht provide information about a tre	end towards insusceptibility	

Contamination of disinfectants (HCF)

- Ps aeruginosa from iodophors- failed manufacturing
- Serratia marcescens from contaminated QAC & CHG
- Burkholderia cepacia from multi use disinfectants
- *Ps aeruginosa* resistance to metal such as silver- silver nitrate dressings
- *Ps aeruginosa* isolated from cosmetics and several other types of products is pathogenic and resistant to several types of antibiotics (Scully et al. 1986).

Infection Control Africa Network

Deliberate exposure to chlorine spraying- Ebola

Site	HCW 500		EVD 550		NEVD 500	
Total interviewed						
Not sprayed (excluded)	7		0		23	
Total analysed	N=493	%	N = 550	%	N=477	%
In own house (under quarantine)	9	2	0	-	440 0	92
Outside in the community	0	-	0	-	21	4
Pre transfer	0	-	162	30	15	3
Back of ambulance	61	12	547	<i>9</i> 9	38	8.0
Leaving ETU			550	100		
Red zone	455	<u>93</u>	120	22		
Spray others	113	23				
In room when spraying others	116	24				
EVD case house	16	3				
EVD suspect house	33	7				

Table 5 Adverse events in HCW with single and multiple chlorine exposure compared					
Characteristic	Single Cl ₂ exposure (N= 285) n(%),	Multiple Cl ₂ exposure (N = 208) n(%)	<i>P</i> -value		
Eye sight problem before	19 (7)	25 (12)	0.04		
Eye sight problem now	95 (34)	123 (59)	<0.001		
Coughing	107 (38)	124 (60)	0.001		
Cough producing sputum	43 (15)	60 (29)	<0.001		
Difficulty in breathing	66 (23)	100 (48)	<0.001		
Chest tightness	109 (38)	131 (63)	<0.001		
Burning throat	85 (30)	112 (54)	<0.001		
Skin irritation	95 (34)	109 (52)	<0.001		

Infection Control Africa Network

Mehtar et al. Antimicrobial Resistance and Infection Control (2016) 5:45 DOI 10.1186/s13756-016-0144-1

		Аг	nerican Journal of Infection Co	ontrol 45 (2017) 1133-8			21
			Contents lists available	at ScienceDirect		IC	AN
		Americ	an Journal of	Infection Control	And JIC American Journal of Infection Control		,
	ELSEVIER	jou	rnal homepage: ww	vw.ajicjournal.org			
	Major Article 16	53 staff int	erviewed;	49 air sample	es taken		
	Health proble	ms and disinfe	ctant product	exposure among st	aff 🛛 🚺 CrossMark		
	at a farge fifth	diagnoses of the survey par	PILAI ticipante hy disinfectant pr	oduct use at a hospital August 2016			
		diagnoses of the survey par	ucipants, by disinfectant pr	Dut se at a nospital, August 201:		D 1 (
	Health effect	All participants (N = 163)	Work-related symptoms*	Disinfectant product use (n = 78)	No disinfectant product use (n = 85)	P value	
	Symptom Nasal problems‡ Watery eyes‡ Arthma like cumptoms§	68 (42) 65 (40)	29 (18) 31 (18) 16 (10)	31 (40) 35 (45)	37 (44) 30 (35)	.64 .26	
	Skin problems [‡] Wheeze [‡]	46 (28) 31 (19) 26 (16)	19(11) 6(4)	12 (15) 12 (15)	22 (26) 19 (22) 14 (16)	.32 >.99	
	Shortness of breath Chest tightness [‡]	21 (13) 18 (11)	7 (4) 4 (2)	11 (14) 10 (13)	10(12) 8(9)	.82 .62	
	Cougn Asthma attack‡ Medication use	9(6) 8(5)	4(2) 4(2)	5 (6) 3 (4)	4 (5) 5 (6)	.74 .72	
	Allergy medicine	48 (29)	9(6)	16(21)	32 (38)	<.05	
T	Infec Asthma medicine Africa Network	18(11)	6(4)	10(13)	8 (9)	.62	

WV	ww.webbertraining.com/schedulep1.php
October 11, 2018	(FREE CBIC Teleclass) INFECTION CONTROL CHAMPIONS ARE MADE, NOT BORN Speaker: To be announced
October 17, 2018	(South Pacific Teleclass) BIOFILMS IN THE HOSPITAL ENVIRONMENT - INFECTION CONTROL IMPLICATIONS Speaker: Prof. Karen Vickery, Macquarie University, Australia
October 18, 2018	INFECTION PREVENTION CORE PRACTICES: RESETTING THE BAR FOR SAFE PATIENT CARE Speaker: Prof. Ruth Carrico, University of Louisville Sponsored by GOJO (www.gojo.com)
October 25, 2018	(FREE Teleclass) "AHEAD" – A CONSOLIDATED FRAMEWORK FOR BEHAVIOURAL

