

Live broadcast sponsored by Clinell (www.clinell.com) A Webber Training Teleclass www.webbertraining.com

CARDIFF

AERDY

Maillard – HIS2018

STANDARD TESTS FOR SPORICIDAL ACTIVITY Clostridium difficile testing	
By ATS Labs on March 9, 2011	
"Because the dormant spore form found in the health care environment causes concern for the infection control process, the EPA requires that all disinfectant products registered for use against <i>C. difficile</i> must be effective against the spore form of the organism, not the vegetative form.	
However, testing is difficult because these strains don't readily sporulate to high populations (>10 ⁸ spores/mL) using standard propagation methods and growth media."	
"Product X achieved a 100% kill of vegetative cells of <i>Clostridium difficile</i> ATCC 9689 (1.1 x 10 ⁷) dried out on a 12 inch square stainless steel test surface. (Wipe time: 30 seconds)"	
9	J-J

SPORICIDAL" WIPE	ES – efficacy testing ag	ainst C. <i>difficile</i> NCTC12727 Siani <i>et al. AJIC</i> 2011; 39(3), 212-218	CAE
Wipes ¹	Bacterial Removal (log ₁₀ cfu/disk ± SD) 500 g surface pressure	Bacterial transfer following 10 s wiping time at 500 g surface pressure	
Negative control	1.13 (± 0.36)	5 consecutive transfers. TNTC	
NaOCI soaked wipe	2.02 (± 0.21)	5 consecutive transfers. TNTC	Y
Clinell® sporicidal wipe	4.09 (± 0.79)	No spore transferred	
TriGene Advance	0.22 (± 0.07)	5 consecutive transfers. From 0 to TNTC	-
AzoMaxActive™	1.30 (± 0.33)	5 consecutive transfers. From 0 to TNTC	
Sani-Cloth® Rapid	0.57 (± 0.07)	5 consecutive transfers. From 1 to TNTC	
Activ8™	+0.08 (± 0.08)	5 consecutive transfers. TNTC	1.
SuperNova®	1.14 (± 0.65)	5 consecutive transfers. From 83 to TNTC	
Tuffie	0.67 (± 0.11)	5 consecutive transfers of ≤43 bacteria	
Enduro Patient wipes	0.88 (± 0.13)	5 consecutive transfers. From 2 to TNTC	
NewGenn ²	$0.84 (\pm 0.66)$	5 consecutive transfers. From 40 to TNTC	

STANDARD TESTS FOR SPORICIDAL ACTIVITY CARDUNITY Wesgate et al. J Hosp Infect 2016;93:256-262. PRIFYS								
60 min contact time	Log ₁₀ Reduction (± SD)							
BIOCIDES/PRODUCTS	BS EN 14347		BS EN 13704		AOAC 966.04		ASTM E2197	
Clean condition	C. diff	B. sub	C. diff	B. sub	C. diff	B. sub	C. diff	B. sub
Glutaraldehyde - 2%	1.87 (0.50)	0.56 (0.03)	1.57 (0.12)	0.44 (0.47)	1.60 (0.22)	0.12 (0.00)	1.17 (0.08)	0.66 (0.06)
<i>Ortho-</i> phthalaldehyde- 0.55%	>6.11 (0.33)	0.62 (0.11)	>5.96 (0.17)	0.48 (0.63)	5.05 (0.08)	0.19 (0.00)	5.83 (0.02)	0.29 (0.06)
<i>Ortho</i> -phthalaldehyde- 0.65%	>6.11 (0.33)	0.56 (0.07)	>5.96 (0.17)	0.77 (0.39)	5.05 (0.08)	0.12 (0.00)	>5.83 (0.00)	0.20 (0.09)
Didecyldimehtyl ammonium chloride -1%	0.69 (0.40)	0.01 (0.18)	0.23 (0.09)	0.07 (0.72)	0.44 (0.20)	0.54 (0.00)	0.39 (0.30)	0.41 (0.05)
Bis(aminopropyl)laurylamine – 1%	1.22 (0.90)	0.66 (0.01)	0.25 (0.09)	0.60 (0.54)	-0.08 (0.17)	-0.07 (0.00)	1.22 (020)	0.40 (0.10)
Amine -1% + quaternary ammonium- 1%	0.29 (0.60)	0.88 (0.03)	0.03 (0.03)	0.68 (0.01)	0.44 (0.04)	0.11 (0.00)	0.23 (0.17)	0.48 (0.10)
Anoxy-Twin-1200 ppm	>6.11 (0.33)	>6.27 (0.00)	>5.96 (0.17)	>4.88 (0.10)	5.05 (0.08)	>5.81 (0.00)	>5.83 (0.00)	>5.31 (0.02)
Aniosept Activ – 2%	6.09 (0.54)	6.81 (0.06)	>6.44 (0.03)	>6.18 (0.07)	5.05 (0.08)	>5.81 (0.00)	>5.83 (0.00)	5.06 (0.24)
NaOCI 5000 ppm	>6.11 (0.33)	>6.27 (0.00)	5.96 (0.17)	>4.88 (0.10)	5.05 (0.08)	>5.81 (0.00)	>5.83 (0.00)	4.28 (0.07)
9								J-Y Maillard – HIS

www.webbertraining.com/schedulep1.php					
December 6, 2018	INFECTIOUS DISEASE HIGHLIGHTS AND LOWLIGHTS IN 2018, AND WHAT TO EXPECT IN 2019 Speaker: Dr. Larry Madoff, ProMED Editor, Director, Division of Epidemiology and Immunization, Massachusetts Dept. of Public Health				
December 12, 2018	(South Pacific Teleclass) CONTROL OF CARBAPENEMASE-PRODUCING ENTEROBACTERIACEA IN AN ENDEMIC SETTING: DO CLASSICAL IPC METHODS WORK FOR NEW AGE BUGS? Speaker: Dr. Kalisvar Marimuthu, Tan Tock Seng Hospital, Singapore				
December 13, 2018	(FREE Teleciass) THE BEST WAYS TO GET YOUR HOSPITAL TO TALK ABOUT INFECTION CONTROL Speaker: Prof. Andreas Voss, Radboud University, The Netherlands Sponsored by Lonza (www.lonza.com) ***				

