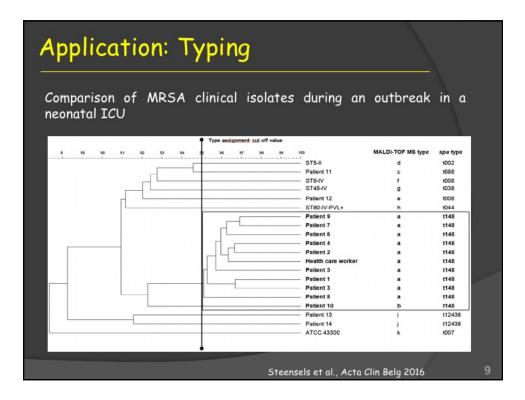
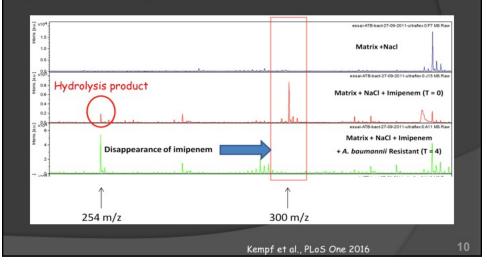


Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales A Webber Training Teleclass www.webbertraining.com

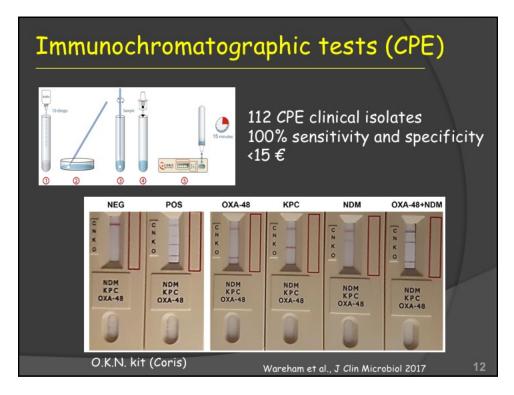


Advantage	es and limits	
Detection method	Advantages	Disadvantages
Conventional; culture on microbiological media and identification by biochemical tests		Lengthy and time consuming process Might require 24-48 h
MALDI-TOF MS	Fast (3-5') Accurate Less expensive than molecular and immunological-base detection methods (1-2 €) Trained laboratory personnel not required	 High initial cost of the MALDI-TOF equipment (150 k€) sed
- E. coli and Shi	and <i>S. mitis/oralis</i> ia pplex	erial isolates:
		l et al., Front Microbiol 2015

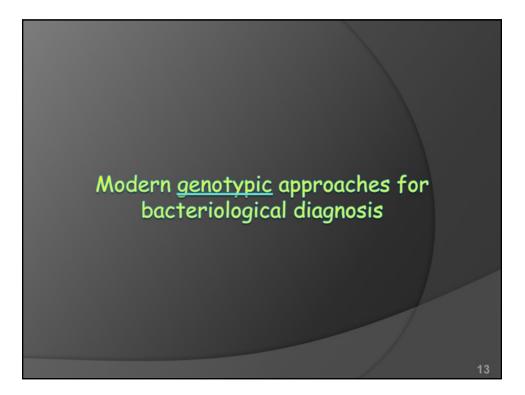
Clinical impact

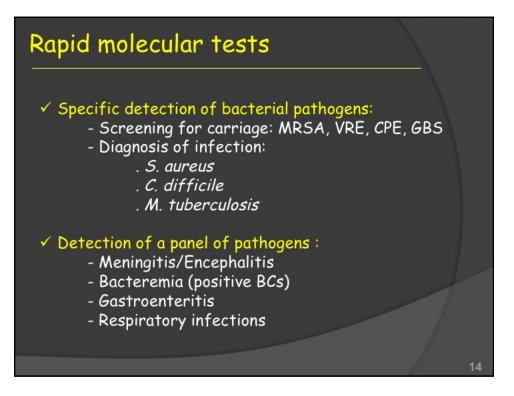

Prospective monocentric study (USA) comparing ID using MALDI-TOF MS vs. conventional method in patients with BCs positive for GNB (role of the antimicrobial stewardship+++)

Outcome		e-intervention hort ($n = 157$)		Intervention cohort ($n = \frac{1}{2}$	112)	P value
30-Day all-cause mortality	33	(21)		10 (8.9)		0.01
60-Day all-cause mortality	48	(30.6)		14 (12.5)		0.001
Inpatient mortality	29	(18.5)		9 (8)		0.02
Table 4 Univariate and multivari Variable	Univaria	te analysis		Multivar	iate analysis ^a	
	OR	95% CI	P value	OR	95% CI	P valu
Nosocomial acquisition	2.35	1.21-4.55	0.01	1.03	0.38-2.84	0.95
Pre-infection LOS	1.02	1.0-1.05	0.04	1.01	0.98-1.04	0.49
APACHE II	1.15	1.08-1.22	< 0.001	1.18	1.10-1.27	<0.00
Respiratory source	2.13	1.08-4.23	0.03	0.82	0.35-1.96	0.66
Genitourinary source	0.31	0.1-0.7	0.003	0.37	0.17-1.12	0.07
MALDI-TOF MS + antimicrobial stewardship	0.37	0.17-0.78	0.009	0.28	0.12-0.71	0.00
Time to active therapy	1.00	1.00-1.01	0.02	1.00	1.00-1.01	0.00

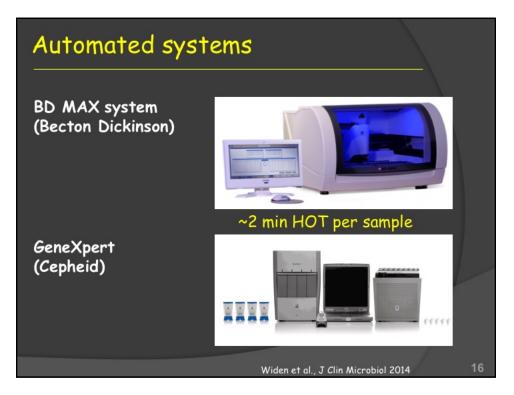

Application: Detection of resistance

Detection of an enzymatic activity \rightarrow resistance to carbapenems by production of carbapenemases in GNB (incubation: 0.5-4 hours)



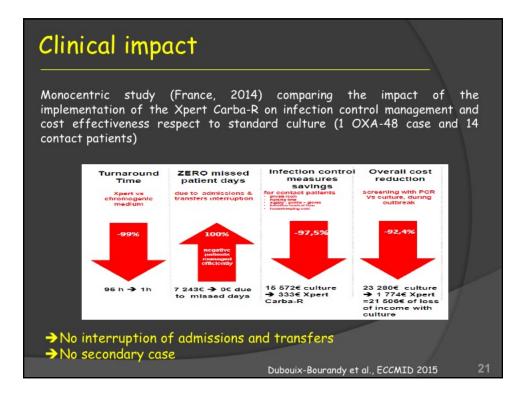

Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales A Webber Training Teleclass www.webbertraining.com

Principle/name of the test	Targeted enzymes	Required additional supplies	Delay for first/ definitive results	Performances on cultured bacteria	Performances on clinical specimen
Colorimetric-chromogenic substrate	,				
ß-Lacta test⊚	ESBL ^b	None	15 min	Sensitivity: 88% Specificity: 71%	Urines: sensitivity: 94%, specificity:100% (positive blood culture: sensitivity: 95.7%, specificity: 100%)
β-CARBA test⊚	Carbapenemase	None	30 min	No direct comparison: sensibility 87%, specificity 100%	
Colorimetric−non-chromogenic substrate Rapid ESBL NP test®	ESBL ^b	None	20 min	Sensitivity: 95% Specificity: 100%	Urines: sensitivity 98%, specificity 99.8%, positive blood culture: sensitivity 100%, specificity 100%
Rapid ESBL Screen kit®	ESBL ^b	None	30 min/2 h	Sensitivity: 92%	
Rapidec® Carba NP test	Carbapenemase	None	30 min/2 h	Specificity: 83% Sensitivity: 99% Specificity: 100%	Positive blood culture: preliminary experimental data
Rapid CARB Screen®	Carbapenemase	None	5 min/2 h	Sensitivity: 89.5% Specificity: 70.9%	000
Rapid Carb Blue kit⊚	Carbapenemase	None	15 min/1 h	No direct comparison: sensitivity 100%, specificity 100%	



Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales A Webber Training Teleclass www.webbertraining.com

Organism detected	Assay	Company	Analysis platform	Probes	DNA target sequence	Specimen type	Time to result (h)
MRSA	BD GeneOhm MRSA ACP	Becton Dickinson	SmartCycler System	Molecular beacons	SCCmee at orfX junction.	Nasal swab	2.5
	BD MAX MRSA	Becton Dickinson	BD MAX System	Taqman ^R probes	SCCmee at orfX junction.	Nasal swab	2
	Xpert MRSA	Cepheid	GeneXpert Dx System	Taqman ^R probes	Insertion site (attBsc) of SCCmee	Nasal swab	1
	MRSA Advanced Test	Roche	LightCycler	FRET probes	Insertion site SSCmee at orfX junction	Nasal swab	2
	NucliSENS EasyQ MRSA	bioMerieux	EasyQ System (NASBA)	Molecular beacons	SSCmee at orfX junction and meeA gene for oxacillin resistance	Nasal swab	3



Intervention	Control	P value
11	88	< 0.001
25	96	< 0.001
82 (943/1147)	73 (528/724)	
79(1955/2461)	82(1949/2385)	
3.2	3.2	0.986
	e enriched chromogour (11 25 82 (943/1147)	11 88 25 96 82 (943/1147) 73 (528/724)

Commercial t	Commercial tests for VRE								
	2 commercial kits for direct detection of VRE from stools/rectal swabs:								
	Sens.	Spe.	PPV	NPV					
Xpert vanA/vanB vanA vanB	74-100 87-100	93-99 15-86	67-89 <mark>3-33</mark>	81-100 71-100					
BD GeneOhm VanR <i>vanA</i> <i>vanB</i>	43-88 75-100	96-100 21-85	82-100 7-37	67-97 100					
identified in Gram-p -vanB : Clostridiun -vanD, vanG : Rum	vanB75-10021-857-37100Many false-positive results, especially for vanB → van genes identified in Gram-positive anaerobes: -vanB : Clostridium spp., Eggerthella lenta, Ruminococcus spp. -vanD, vanG : Ruminococcus spp.>								
				acheva et al., Am Infect Dis 2012	18				

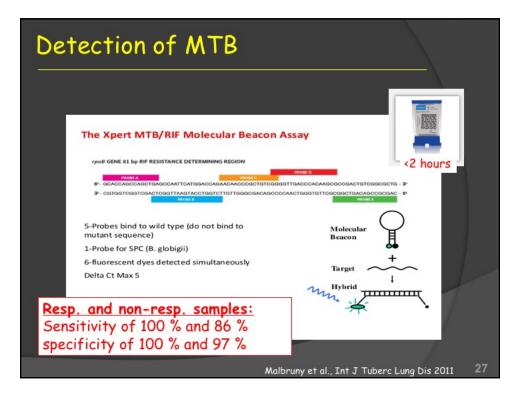
linical impac	:†							
Prospective study (2012) in France comparing Xpert <i>vanA/vanB</i> vs. enriched chromogenic culture								
	Investigation of the first case in the diabetology unit	Investigation of a secondary case in the nephrology unit						
	(n=31 patients)	(n=22 patients)						
From sampling, to sample reception	2.6 (1.7-2.6)	2.8 (1.1 - 3.8)						
From sampling, to results	70.5 (69.4 – 70.5)	4.6 (4.0 – 18.9)						
Total cost of microbiological testing	333.50	870.40						
Overall loss of income (€)	13,968.70 to 85,175.00	0						
Overall cost of the strategy (€)	14,302.20 to 86,175.50 ⁹	870.40 to 2,611.20 ⁹						
		control strategy without f patient transfers and						
	Ringand et al Antimica	rob Resist Infect Control 2013						

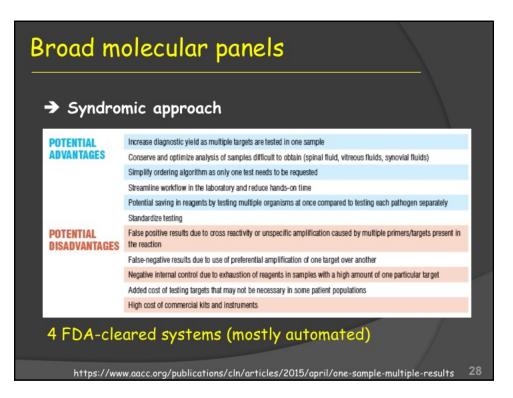
Comme	rcia	l tests f	or CP	Έ			
Numerous k	its for	detection direc	tly from	stools	rectal s	swabs	
Test/Method	Turnaround time	Target species (n*)	Target carbapenemases	Sensitivity (%)	Specificity (%)	PPV† (%)	NPV‡ (%)
Check-Direct CPE	<180 min	Gram -negative bacili (83-450)	KPC, VIM, NDM, OXA-48	97-1-100-0	94-0-100-0	100-0	0.0-70.0
LAMP/eazyplex ⁽³⁾ superBug complete A	25-60 min	Gram –negative bacilli (14–450)	KPC, VIM, NDM, OXA-48	100-0	100-0 (83-0 for OXA-48 like genes)	ND	ND
TagMan PCR	<120 min	Enterobacteriaceae (59, 1308)	Classes A, B & D	100-0	100-0	ND	ND
NucliSENSEasyQKPC	<120 min	Enterobacteriaceae (300)	KPC only	100-0	100-0	ND	ND
Xpert [®] Carba-R kit	52 min	Gram-negative bacilii (450)	KPC, VIM, NDM, OXA-48	100-00	100-0 (83-0 for OXA-48 like genes)	ND	ND
Microarray (Alere technologies)	2–8 h	Gram-negative bacilli (117)	Classes A, B, D	98-2	97-4	ND	ND
Microarray (Verigene BC-GN)	2 h	Gram-negative bacili (104)	Classes A, B, D	96-8	100-0	ND	ND
Microarray (Check-MDR CT101-103)	<u>≤</u> 6 h	Gram-negative bacili (57–187)	Classes A, B, D	90-5-100-0 (KPC=85-0)**	95-7-100-0	97-6-100-0	99-0-100-0
Xpert MDRO assay	<1 h	Gram-negative bacili (328)	KPC, NDM, VIM	100-0	99-0-99-4	81-8-93-0	100-0
				>90)%		
			Sekyere	et al., J Ap	pl Microbi	ol 2015	2

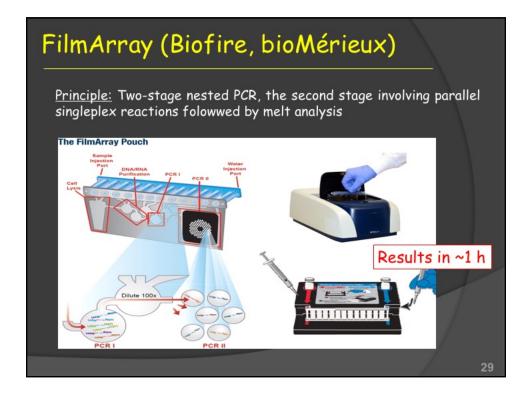
Commercial tests for GBS

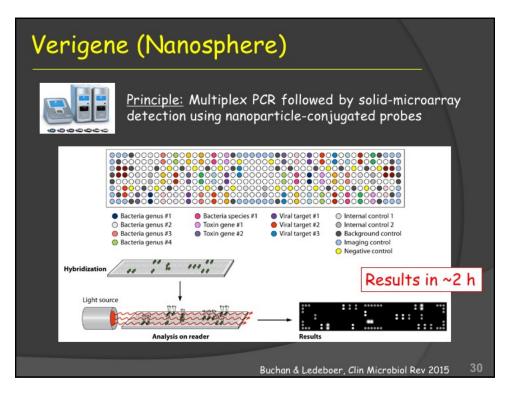
TABLE 1 PCR or nucleic acid amplification test (NAAT) validation for GBS screening [†]								
PCR Studies	n, sample size	Sensitivity, % (95% Cl)	Specificity, % (95% Cl)	Time to run test (mins)	Test – Site			
Bergeron et al 2000 ²⁷	112	97.0 (82.5-99.8)	100 (86.9-100)	30-100	Conventional PCR vs. new fluorogenic PCR – Single center			
Davies et al* 2004 ²⁸	803	94.0 (90.1-97.8)	95.9 (94.3-97.4)	40	IDI Strep – Multicenter			
Gavino et al* 2007 ²⁹	55	95.8 (76.9-99.8)	64.5 (45.4-80.2)	<75	Xpert GBS Assay – Single center			
Edwards et al 2008 ³⁰	784	91.1 (86.1-94.7) 79.3 (72.8-84.8)	96.0 (94.0-97.4) 95.4 (93.4-96.9)	75	Xpert GBS Assay vs. IDI Strep – Multicenter			
Money et al* 2008 ³¹	190	90.7 (79.7-96.9)	97.6 (93.1-99.5)	99	IDI Strep – Canadian single center			
El Helali et al 2009 ³²	968	98.5 (94.8-99.6)	99.6 (98.8-99.9)	<75	Xpert GBS Assay – French single center			
Young et al* 2011 ³³	559	90.8 (84.6-95.2)	97.6 (95.6-98.8)	41	Xpert GBS Assay – Single center			

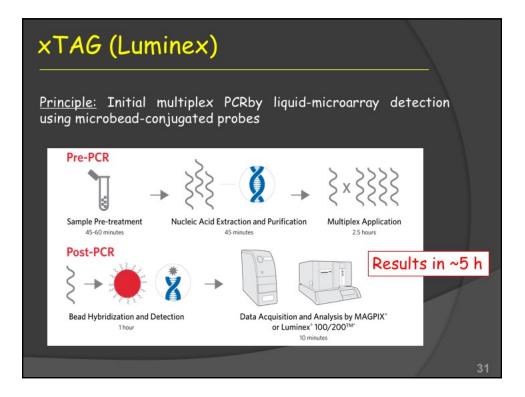
Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales A Webber Training Teleclass www.webbertraining.com

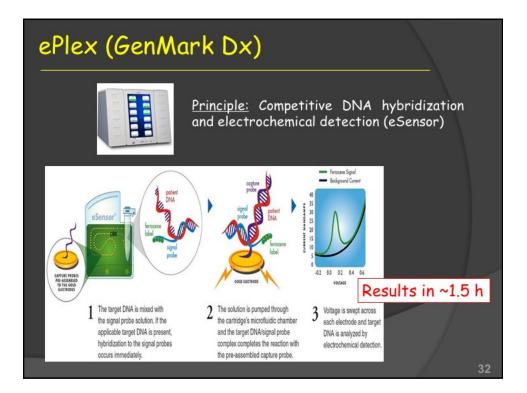

Organism detected	Assay	Company	Analysis platform	Probes	DNA target sequence	Specimen type	Time to result (h)
S. aureus and MRSA	Xpert MRSA/ SA SSTI	Cepheid	GeneXpert System	Taqman ^R probes	spa for S. aureus, SSCmee and meeA gene for methicillin resistance	Wound swab	<l< td=""></l<>
	Xpert SA Nasal Complete	Cepheid	GeneXpert System	Taqman ^R probes	spa for S. aureus, SSCmee and meeA gene for methicillin resistance	Nasal swab	<l< td=""></l<>
	Xpert MRSA/SA Blood Culture ^a	Cepheid	GeneXpert System	Taqman ^R probes	spa for S. aureus, SSCmee and meeA gene for methicillin resistance	Blood Culture	<l< td=""></l<>
	StaphSR	BD GeneOhm	Smart Cycler	Molecular beacons	nue gene for S aureus, Insertion site (attBse) of SCCmee for methicillin resistance	Blood Culture	1-1.5
	BC-GP ^b	Nanosphere	Verigene	Gold nanoparticles	gyrB for S. aureus and meeA gene for methicillin resistance	Blood culture	2.5
Sens	itivity e	1	U			biood culture	2.0

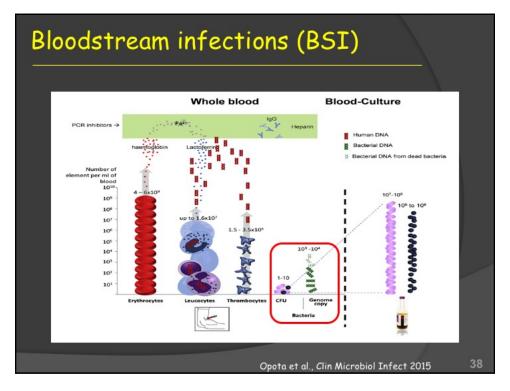

Performances in BSI (positive BCs) Detection of <i>S. aureus</i>									
Kit	No. HC	Sensitivity (%)	Specificity (%)						
Xpert MRSA/SA BC	792	99.6	99.5						
GeneOhm StaphSR	782	99.2	96.5						
Detection of MRS	5A No. HC	Sensitivity (%)	Specificity (%)						
Xpert MRSA/SA BC	792	98.1	99.6						
GeneOhm StaphSR	782	94.3	97.8						


Clinical impact			
Monocentric study (USA) comparing the Xpert M 1) vs. conventional method (group 2) in patients Gram-positive cocci in clusters (GPCC)			
TABLE 2. Data on Drug Therapy for Patients with Bacteremia due to Me aureus at the Michael E. DeBakey Veterans Affairs Medical Center in Housto			lococcus
Variable	Group 1^a ($n = 12$)	Group 2^{b} ($n = 48$)	P°
Mean time to initiate MSS drug therapy, hours	5.2	49.8	.007
Median time to initiate MSS drug therapy, hours	0	48.5	.004
Mean duration of MRS drug therapy, hours	19.7	80.7	.003
No. (%) of patients not initially treated with MRS drug	3 (25.0)	5 (10.4)	
No. (%) of patients treated with MRS drug for unrelated condition	3 (25.0)	4 (8.3)	
No. (%) of patients treated with MRS drug for staphylococcal bacteremia	6 (50.0)	39 (81.3)	.025
But no difference in time to initiation of therapy for MRSA between groups (P=0.33)		1	
Parta et al., Infect	Control Hos	p Infect 201	o 25


Commercial tests for *C. difficile*

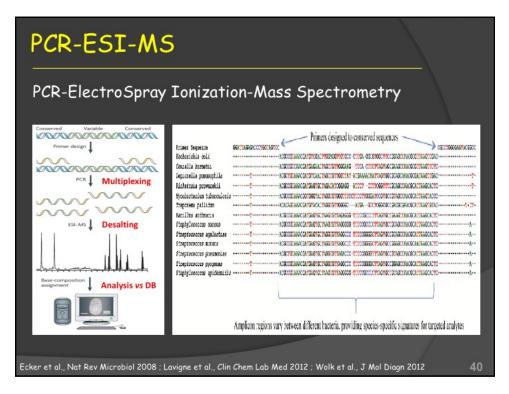

Assay	Method	Target	DNA extraction	HOT (min) [†]	TAT (min)†	Cost per test	Sens. (%)	Spe. (%)
BD GeneOhm Cdiff	RT-PCR	tcdB	Manual	45	120	\$47 [‡]	82-98	91-100
Illumigene C. difficile	LAMP	tcdA	Manual	10	60	\$33*	73-98	91-100
Xpert C. difficile	Multiplex RT-PCR	tcdB, cdt, tcdC∆117	Automated	10	60	\$52 [‡]	93-100	91-99
BD MAX Cdiff	RT-PCR	tcdB	Automated	10	100	\$43 [±]	90-98	98-100
Portrait C. difficile	HDA	tcdB	Automated	10	100	\$25	98	93
ProGastro Cd	RT-PCR	tcdB	Automated (easyMAG)	45	180	\$25	77-100	93-99
Seeplex Diarrhea ACE	Multiplex PCR	tcdB	Manual	N/A	240	\$41 [‡]	90	97
⁺ HOT and TAT for a batch of	5 samples.							
Do not det	ect free	ve results (toxins in st	(mutations, o ools	deletion	s)			
Clinical be	netit++		Le	Guern et a	I., Expert	Rev Ma	ol Diagn 2013	26



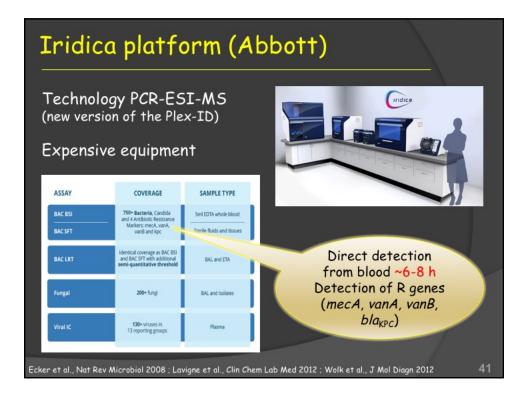

n = 1,643 CSF	Sensitivity/PPA ^b			Specificity/NPA ^b		
Analyte	$TP/(TP + FN)^c$	%	95% CI	TN/(TN + FP) ^c	96	95% CI
Bacteria						
E. coli K1	2/2	100	34.2-100	1,557/1,558	99.9	99.6-100
H. influenzae	1/1	100		1,558/1,559	99.9	99.6-100
L. monocytogenes	0/0			1,560/1,560	100	99.8-100
N. meningitidis	0/0			1,560/1,560	100	99.8-100
S. agalactiae	0/1	0.0		1,558/1,559	99.9	99.6-100
S. pneumoniae	4/4	100	51.0-100	1,544/1,556	99.2	98.7-99.6
Viruses						
CMV	3/3	100	43.9-100	1,554/1,557	99.8	99.4-99.9
EV	44/46	95.7	85.5-98.8	1,507/1,514	99.5	99.0-99.8
HSV-1	2/2	100	34.2-100	1,556/1,558	99.9	99.5-100
HSV-2	10/10	100	72.2-100	1,548/1,550	99.9	99.5-100
HHV-6	18/21	85.7	65.4-95.0	1,532/1,536	99.7	99.3-99.9
HPeV	9/9	100	70.1-100	1,548/1,551	99.8	99.4-99.9
VZV	4/4	100	51.0-100	1,553/1,556	99.8	99.4-99.9
Yeast						
- C. neoformans/C. gattii	1/1	100		1,555/1,559	99.7	99.3-99.9

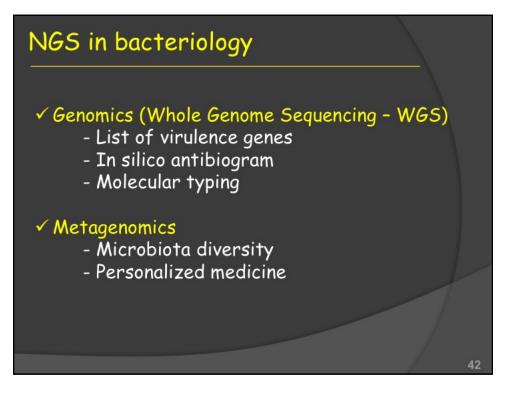
Bacter	emia (p	ositive	e BCs)	
2 automat	ted system	S		
Gram-positive bacteria	Gram-negative bacteria	Candida species	Verigene	(Nanosphere, Inc.)
FilmArray Blood Cult	ture Identification Panel (BioFire I	Diagnostics, LLC)	Gram-Positive Blood Culture Test	Gram-Negative Blood Culture Test
Staphylococcus species Staphylococcus aureus Streptococcus species Streptococcus agalactiae Streptococcus pyogenes Streptococcus pneumoniae Enterococcus species Listeria monocytogenes	Klebsiella avytoca Klebsiella pneumoniae Serratia species Proteus species Acinetabacter baumanni Haemophilus influenzae Neisseria meningitais Pseudomanas aeruginosa Enterobacteriaceae Escherichia coli Enterobacter cloacae complex	Candida abicans Candida glabrata Candida krusei Candida parapsilosis Candida tropicalis Candida tropicalis 19+5	Staphylococcus aureus Staphylococcus epidemidis Staphylococcus epidemidis Streptococcus aginasus group Streptococcus aginasus group Streptococcus progenes Enterococcus progenes Enterococcus species Staphylococcus species Staphylococcus species Staphylococcus species Staphylococcus species Staphylococcus species Staphylococcus species Mexistance genes mecA	Escherichia coli Klebsiella pneumoniae Klebsiella avytoca Pseudomanas aeruginosa Acinetobacter species Carobacter species Enterobacter species Proteus species Resistance genes bla _{NDM}
Resistance genes mecA vanA/vanB	Resistance genes bla _{KPC}	3	vanA vanB 3	blayec 5 blacxz 5 blavym blactxxm
			Patel, Mayo Clin Proc 2	2016 34

Clinical impact			
Retrospective monocentric (US/ apid PCR (Verigene BC-GN) on p			
Clinical outcome	Pre-BC-GN	Post-BC-GN	P value
Mean time from initial Gram stain to BC-GN identification, h	NAª	3.5	NA
Mean time from initial Gram stain to organism identification, h	37.9	10.9	< 0.001 ^b
Mean time from initial Gram stain to effective therapy, h			
All cases	10.2	6.5	0.12b
Cases on suboptimal empirical therapy	30.3	19.1	0.12 ^b
No. of cases in which therapy was de-escalated	33	37	0.66 ^c
Mean time from initial Gram stain to de-escalation, h	40.9	34.1	0.14 ^b
Recurrence of bacteremia, no. (%)	8 (8.2)	3 (3.1)	0.21 ^c
Mean total length of stay in hospital, days	15.2	18.0	0.52 ^b
Mean length of hospital stay after positive culture, days	9.7	9.4	0.87 ^b
Mean length of stay in ICU, days	16.2	12.0	0.03 ^b
30-day mortality, no. (%)	19 (19.2)	8 (8.1)	0.04 ^c
ESBL cases, no.	15	11	0.53 ^c
Length of stay in hospital, days	12.0	13.5	0.59 ^b
Mean time to effective therapy, h (no.) ^d	41.4 (9)	7.3 (9)	0.04 ^b
30-day mortality, no. (%)	4 (26.7)	0 (0)	0.11°
			1
	Walker et al., 3	Clin Microbiol 2016	


G	astroenteriti	S			
	Tamet	FilmArray Gastrointestinal Panel (BioFire Diagnostics,	xTAG Gastrointestinal Pathogen Panel (Luminex Composition)	Verigene Enteric Pathogens Test (Nanosphere, Inc.)	
	Target Bacteria Gampylobacter species Glastridium difficile Plesiomanas shigelloides Salmonella species Yersinia enterocolitica Vibrio species Enteroaggregative Escherichia coli Enteropathogenic Escherichia coli Enterotoxigenic Escherichia coli Enterotoxigenic Escherichia coli Shiga toxin—producing Escherichia coli		(Luminex Corporation)	(Nanosphere, Inc.)	
	Escherichia coli 0157 Shigello species (enteroinvasive Escherichia coli) Parasites Cryptosporidium species Cyclospara cayetanensis Entamoebe histolytica Giardia lambia Viruses Adenovirus serotypes 40/41 Astrovirus Norovirus	11 1111 1111	11 11 1 11	1	
	Rotavirus Sapovirus	Patel, M	ayo Clin Proc 2016	1	36

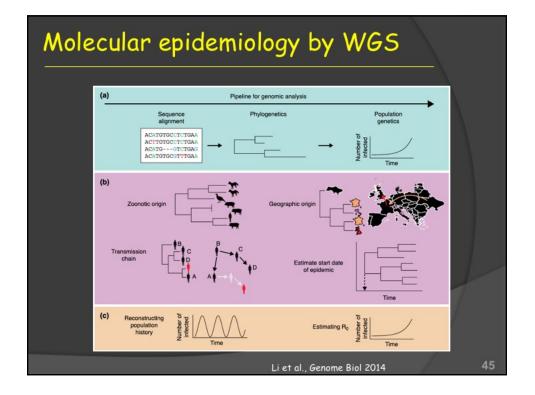
From no	isopharyng	geal swab specin	nens	
Assaya	Manufacturer	Methodology	Preextraction required	Viruses reported ^b
FilmArray RP ^e	BioFire Diagnostics	Endpoint melt curve analysis	No	AdV; CoV HKU1, NL63; influenza virus A (H1/2009, H1, H3); influenza virus B; MPV; PIV1, -2, -3, -4; RSV; RhV/EV
eSensor RVP	GenMark Dx	Voltammetry	Yes	AdV (C, B/E); influenza virus A (H1/2009, H1, H3); influenza virus B; MPV; PIV1, -2, -3; RSV (A/B); RhV
xTAG RVPv1	Luminex Molecular Diagnostics	Fluorescence-labeled bead array	Yes	AdV; influenza virus A (H1, H3); influenza virus B; MPV; PIV1, -2, -3; RSV (A/B); RhV/EV
xTAG RVP fast	Luminex Molecular Diagnostics	Fluorescence-labeled bead array	Yes	AdV; influenza virus A (H1, H3); influenza virus B; MPV; RSV; RhV/EV
ePlex RPP	GenMark Dx	Voltammetry	No	AdV;CoV (229 ^E , HKU1, NL63, OC43);influenza virus A (H1/2009, H1, H3);influenza virus B;MPV;PIV1, -2, -3, - 4;RSV (A/B);RhV/EV

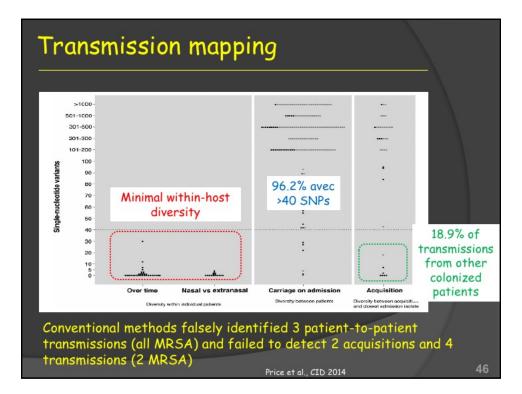


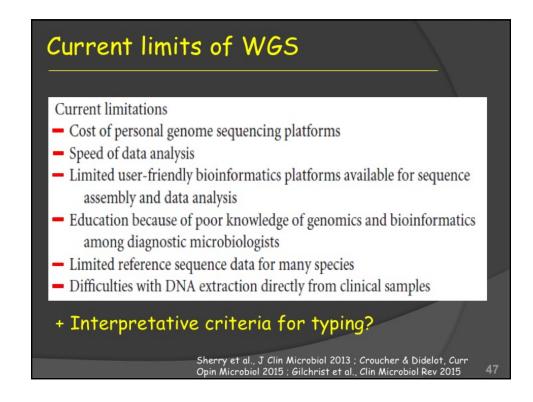

Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales A Webber Training Teleclass www.webbertraining.com

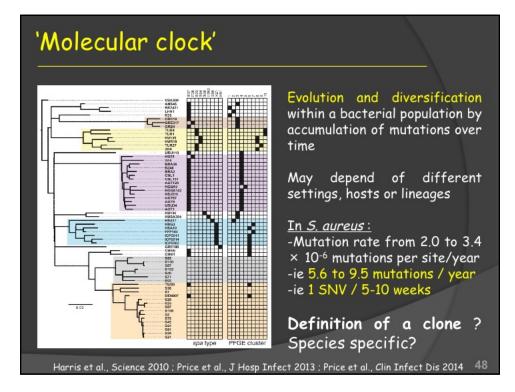
System	Method	Time to result (hours)		Microorganism coverage	Resistance and virulence markers	Sensitivity, specificity, and correlation with conventional methods (%)	Comments
SepsiTest Molzym, Bremen, Germany	Broad-range PCR + sequencing	6	I-10ª	>345 bacteria (Gram positive and Gram negative) and fungi	0	21–87, 85–96, NR	Pros: can be used in othe sterile samples; Cons: variable sensitivity and specificity
SeptiFast Roche Molecular System, Basel, Switzerland	Multiple broad-range real-time PCR	3.5-5	1.5	6 Gram positive, 8 Gram negative, 5 fungi	mecA ^b	43-95, 60-100, 43-83	Pros: time to result; Cons variable sensitivity and specificity, no quantification
MagicPlex Seegene, Seoul, Korea	Multiple PCR + multiplex real-time PCR	3–5	I	21 bacteria (Gram positive and Gram negative) at species level (90 at genus level), 6 fungi	mecA, vanA/B	37-65, 77-92, 73	Pros: fast; Cons: limited number of studies, succession of reaction and device, no quantification
VYOO SIRS-Lab, Jena, Germany	Multiplex PCR + electrophoresis	8	5	14 Gram positive, 18 Gram negative, 7 fungi	0	NR, NR, 70	Pros: highly sensitive; Cons: limited number of studies, several manual steps
PLEX-ID, Abbott Molecular, Carlsbad, CA, USA	Multiplex broad-range PCR/ESI-MS	6	1.25–5°	Up to 800 (Gram positive, Gram negative, fungi)	mecA, bla _{KPC} , vanA/B	50–91 ^d , 98–99, 79–97	

Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales A Webber Training Teleclass www.webbertraining.com

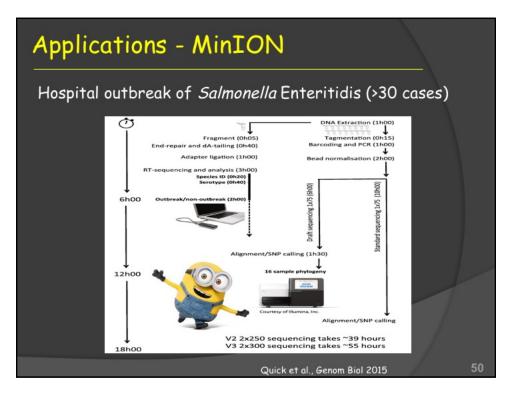

Platform	Instrument	Form factor	Sequencing technology ^e	Instrument cost	Read length (bp)	Run time (modes)	Single read output (modes) ^c	Sequence output (modes)	Approx cost per isolate (bacterial)
Illumina	MiniSeq	Benchtop	SBS	\$50,000	2 x 150	24 h/17 h	25 M/8 M	7.5 Gb/ 2.4 Gb	TBD
	MiSeq(Dx)	Benchtop	SBS	\$99,000	2 x 300	56 h	25 M	15 Gb	\$60-70
	NextSeq(Dx)	Benchtop	SBS	\$250,000	2 x 150	29 h/26 h	400 M/130 M	120 Gb/ 39 Gb	\$50-60
	HiSeq (various models)	Capital	SBS	\$750,000	2 x 125	6 days/40 h		1 Tb/ 180 Gb	\$50-60
ThermoFisher IonTorrent	PGM	Benchtop	Semiconductor	\$50,000	400	7 h	5.5 M	2 Gb	\$60-70
	Proton	Benchtop	Semiconductor	\$150,000	200	4 h	83 M	10 Gb	\$60-70
	\$5	Benchtop	Semiconductor	\$65,000	400	2.5 h /4 h	5 M/80 M	15 Gb	\$50-60
	S5XL	Benchtop	Semiconductor	\$150,000	400	2.5 h/4 h	5 M/80 M	15 Gb	\$50-60

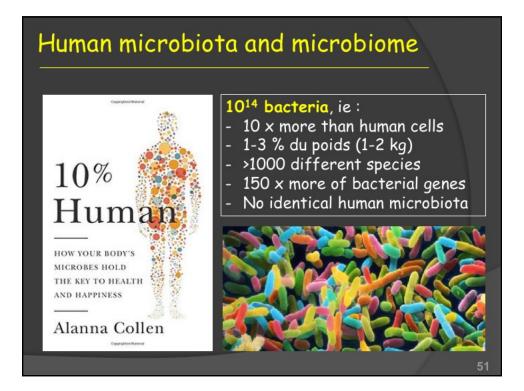

In silico antibiogram of *S. aureus*

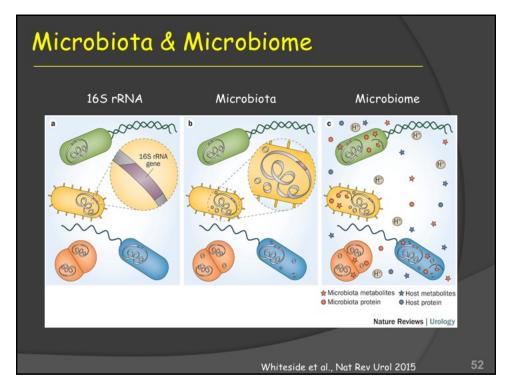

Creation of a panel of resistance mechanisms (501 reference strains) tested agaisnt 401 clinical isolates:


		No. of isolates phenotype	resistant by	No. of isolates by phenotype	No. of isolates susceptible by phenotype		Very major error			
	Antimicrobial agent	Susceptible by genotype ⁶	Resistant by genotype	Susceptible by genotype	Resistant by genotype ⁶	Total no. of isolates	rate (%) (95% CI)	Major error rate (%) (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Г	Penicillin	3 (2)	379	84	25 (9)	491	0.6 (0.1-1.8)	5.1 (3.3-7.4)	0.99 (0.98-1.00)	0.77 (0.68-0.84
	Methicillin	2(1)	55	432	2(1)	491	0.4 (0.05-1.5)	0.4 (0.05-1.5)	0.96 (0.87-0.99)	1.00 (0.98-1.00
	Ciprofloxacin	6 (4)	64	420	1 (0)	491	1.2 (0.4-2.6)	0.2 (0.05-1.1)	0.91 (0.82-0.96)	1.00 (0.98-1.00
	Erythromycin	4(2)	79	405	3 (3)	491	0.8 (0.2-2)	0.6 (0.1-1.8)	0.95 (0.87-0.98)	0.99 (0.98-1.00
△	Clindamycin	2 (2)	77	2	0	81	2.5 (0.3-8.6)	0.0 (0-4.4)	0.97 (0.90-1.00)	1 (0.20-1.00)
	Tetracycline	0	18	471	2 (2)	491	0.0 (0-0.7)	0.4 (0.05-1.5)	1.00 (0.78-1.00)	1.00 (0.98-1.00
<u>.</u>	Vancomycin	0	0	491	0	491	0.0 (0-0.7)	0.0 (0-0.7)	N/A ^c	1.00 (0.99-1.00)
4	Fusidic acid	4 (4)	39	448	0	491	0.8 (0.2-2)	0.0 (0-0.7)	0.91 (0.77-0.97)	1.00 (0.99-1.00)
	Trimethoprim	2 (2)	1	197	2(1)	202	1.0 (0.1-3.5)	1.0 (0.1-3.5)	0.33 (0.02-0.87)	0.99 (0.96-1.00)
	Gentamicin	2 (2)	2	487	0	491	0.4(0.05-1.5)	0.0 (0-0.7)	0.50 (0.09-0.91)	1.00 (0.99-1.00)
	Mupirocin	0	2	489	0	491	0.0(0-0.7)	0.0 (0-0.7)	1.00 (0.20-1.00)	1.00 (0.99-1.00)
L	Rifampin	0	5	486	0	491	0.0 (0-0.7)	0.0 (0-0.7)	1.00 (0.46-1.00)	1.00 (0.99-1.00)
	Overall	25 (19)	644	4,410	35 (16)	5,112	0.5 (0.3-0.7)	0.7 (0.5-0.9)	0.97 (0.95-0.98)	0.99 (0.99-1.00)
				FDA	cutof	fs :	<1,5 %	< 3 %		
						Gordo	on et al., J C	lin Microbi	ol 2014	4

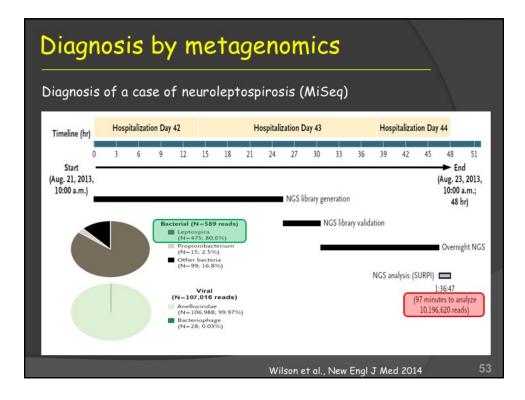
Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales A Webber Training Teleclass www.webbertraining.com

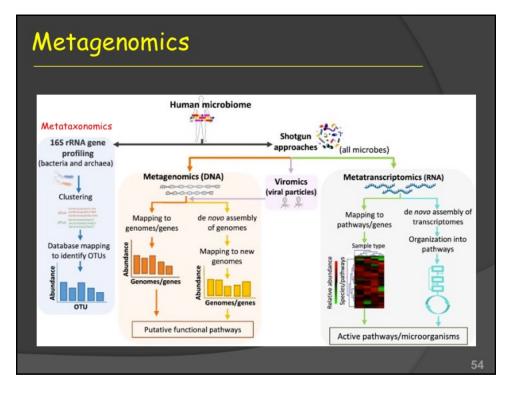


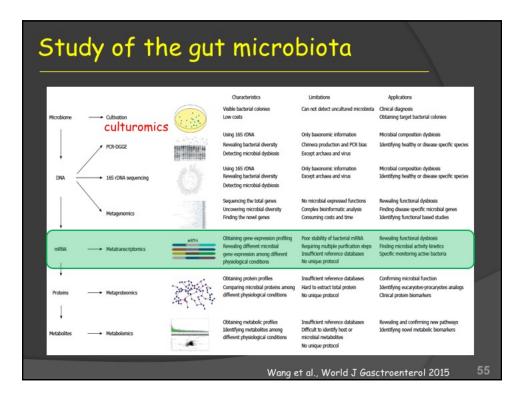


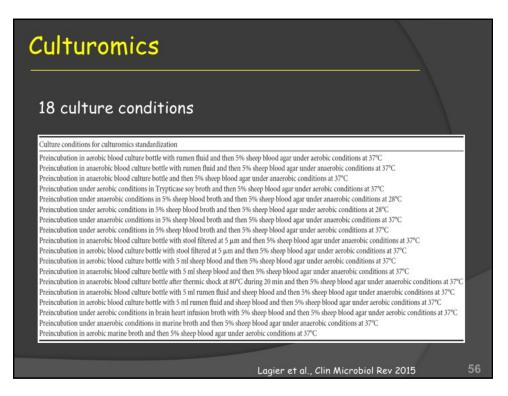


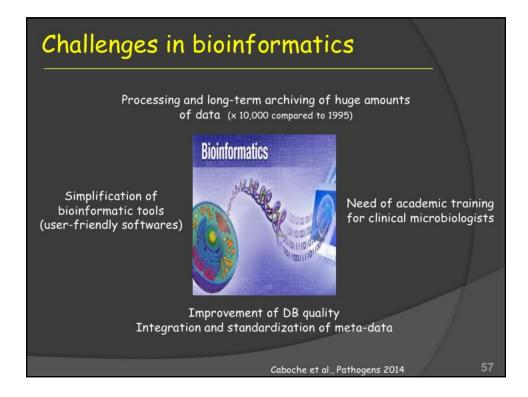
- No	g-read amplif h erroi	icatior	n of ĎN	NA fr	agmen		nts		
Platform	Instrument	Form factor	Sequencing technology ^a	Instrument cost	Read length (bp)	Run time (modes)	Single read output (modes) ^c	Sequence output (modes)	Approx cost per isolate (bacterial)
Pacific BioSciences	RSII	Capital	SMRT	\$700,000	10,000- 15,000	4 h	50,000	1 Gb	\$500-600
	Sequel	Capital	SMRT	\$350,000	10,000- 20,000	6 h	350,000	7 Gb	TBD
	MinION Mkl	Portable	Nanopore	\$1,000	>10,000	1 min to 48 h	2.2 M/ 4.4 M	Up to 42 Gb	TBD
Oxford Nanopore			Nanopore	TBD ^b	>10.000	1 min to	625 M/	6 Tb/	TBD



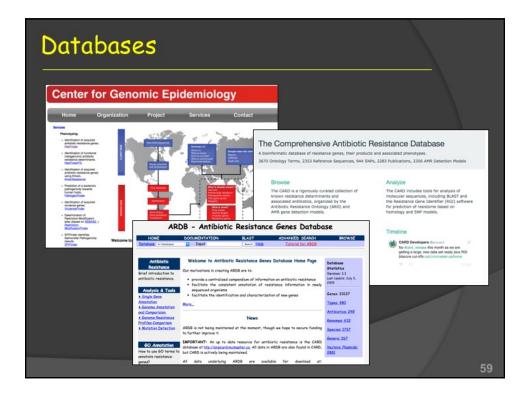

Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales A Webber Training Teleclass www.webbertraining.com




Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales A Webber Training Teleclass www.webbertraining.com



Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales A Webber Training Teleclass www.webbertraining.com



Hosted by Prof. Jean-Yves Maillard, Cardiff University, Wales A Webber Training Teleclass www.webbertraining.com

	www.webbertraining.com/schedulep1.php
April 18, 2019	INFECTION CONTROL ISSUES IN HEALTHCARE CONSTRUCTION, PART 1 - RENOVATION Speaker: Andrew Streifel, University of Minnesota
May 3, 2019	(FREE WHO Teleciass - Europe Special Lecture for 5 May) CLEAN CARE FOR ALL - IT'S IN YOUR HANDS Speaker: Prof. Didier Pittet and Prof. Benedetta Allegranzi, World Health Organization, Geneva Sponsored by the World Health Organization Infection Control Global Unit
May 16, 2019	IMMIGRANT AND REFUGEE POPULATIONS: A PUBLIC HEALTH AND POLICY PERSPECTIVE ON A CONTINUTING GLOBAL CRISIS Speaker: Prof. Sotirios Tsiodras, National and Kapodistrian University of Athens, Greece
May 27, 2019	(FREE Teleclass – Broadcast live from the IPAC Canada conference) To be announced Speaker: To be confirmed
May 29, 2019	(FREE Teleclass – Broadcast live from the IPAC Canada conference) ONE HEALTH: THE RISKS AND REWARDS OF LOVING ANIMALS Speaker: Prof. Jason Stull, Ohio State University

