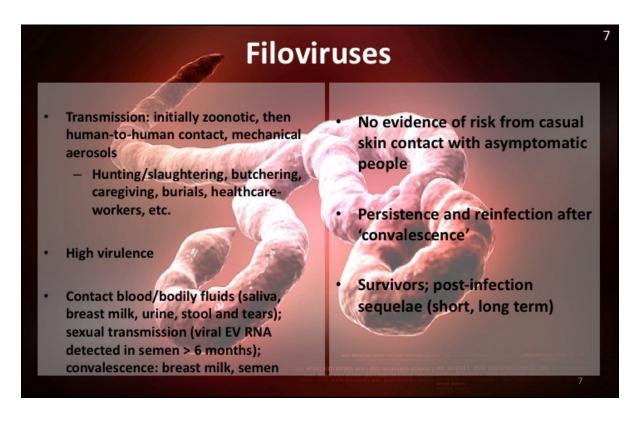


Hosted by Prof. Sade Ogunsola, President, Infection Control Africa Network www.webbertraining.com



Hosted by Prof. Sade Ogunsola, President, Infection Control Africa Network www.webbertraining.com

Marburg virus activity over time	(1967 – 2017)
----------------------------------	---------------

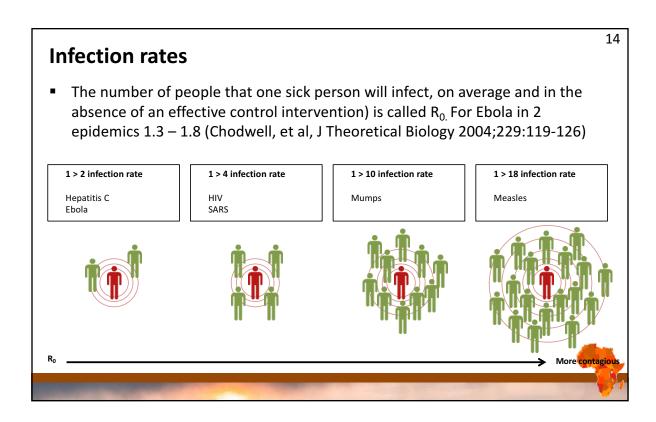
Year	Virus	Geographic Location	Human Deaths	Cases	CFR
1967	MARV	Marburg and Frankfurt, GERMANY	7	29	24%
1967	MARV Belgrade, YUGOSLAVIA 0		0	2	0%
1975	MARV	Johannesburg, SOUTH AFRICA	1	3	33%
1980	MARV	Nairobi, KENYA	1	2	50%
1987	RAVV	Nairobi, KENYA	1	1	100%
1988	MARV	Koltsovo, RUSSIA	1	1	100%
1990	MARV	Koltsovo, RUSSIA	0	1	0%
1998-2000	MARV & RAVV	Durba & Watsa, DEMOCRATIC REPUBLIC OF CONGO	128	154	83%
2004-2005	MARV	Uige, ANGOLA	227	252	90%
2007	MARV & RAVV	Kamwenge District, UGANDA	1	4	25%
2008	MARV	Colorado, USA	0	1	0%
2008	MARV	Lieden, NETHERLANDS	1	1	100%
2012	MARV	Kampala, Ibanda, Mbarara and Kabarole, UGANDA	9	18	50%
2014	MARV	Mpigi, UGANDA	1	1	100%
	MARV	Kween District, UGANDA	2	2	100%

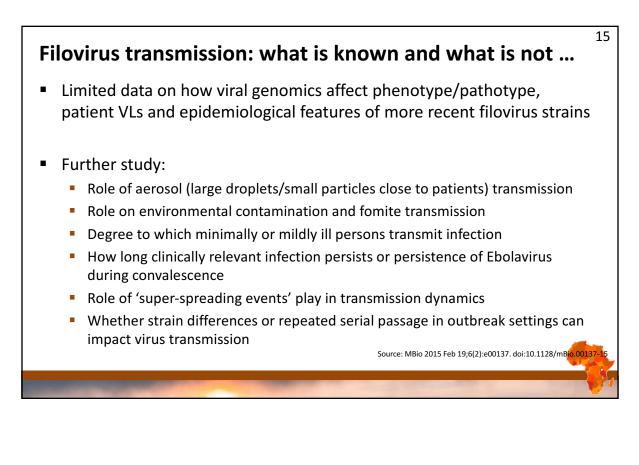
Hosted by Prof. Sade Ogunsola, President, Infection Control Africa Network www.webbertraining.com

8

Year	Virus	Geographic Location	Human Deaths	Cases	CFR
1976	SUDV /EBOV	Porton Down, UNITED KINGDOM (laboratory accident)	0	1	0%
1976	SUDV	Juba, Maridi, Nzara and Tembura, SUDAN	151	284	53%
1976	EBOV	Yambuku, ZAIRE	280	318	88%
1977	EBOV	Bonduni, ZAIRE	1	1	100%
1979	SUDV	Nzara, SUDAN	22	34	65%
1994	TAFV	Tai National Park, CŎTE D'IVOIRE	0	1	0%
1994-1995	EBOV	Woleu-Ntem and Ogooué-Ivindo Provinces, GABON	31	52	60%
1996	EBOV	Johannesburg, SOUTH AFRICA	1	2	50%
1995	EBOV	Kikwit, ZAIRE	254	315	81%
1996	EBOV	Mayibout , GABON	21	37	57%
1996	EBOV	Sergiyev Posad, RUSSIA (laboratory accident)	1	1	100%
1996-1997	EBOV	Ogooué-Ivindo Province, GABON; Cuvette-Ouest Department, REPUBLIC OF THE CONGO	45	60	75%
2000-2001	SUDV	Gulu, Mbarara and Masindi Districts, UGANDA	224	425	53%

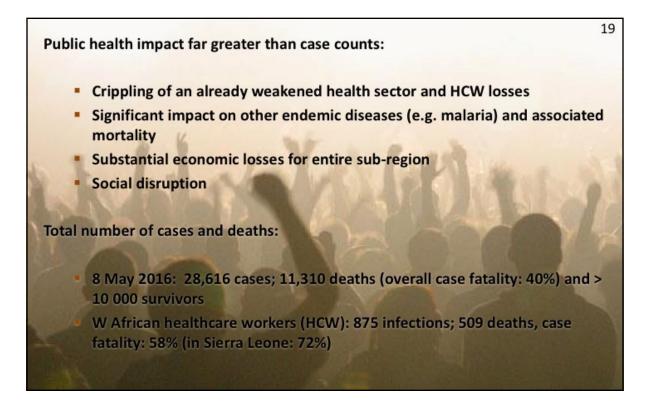
Ebola virus activity over time (2001 – current)				10	
Year	Virus	Geographic Location	Human Deaths	Cases	CFR
2001-2002	EBOV	Ogooué-Ivindo Province, GABON; Cuvette-Ouest Department, REPUBLIC OF THE CONGO	107	135	79%
2002	EBOV	Ogooué-Ivindo Province, GABON; Cuvette-Ouest Department, REPUBLIC OF THE CONGO	10	11	91%
2002-2003	EBOV	Cuvette-Ouest Department, REPUBLIC OF THE CONGO; Ogooué-Ivindo Province, GABON	128	143	90%
2003	EBOV	Cuvette-Ouest Department, REPUBLIC OF THE CONGO	29	35	83%
2004	EBOV	Koitsovo, RUSSIA (laboratory accident)	1	1	100%
2004	SUDV	Yambio County, SUDAN	7	17	41%
2007	EBOV	Kasai Occidental Province, DEMOCRATIC REPUBLIC OF THE CONGO	186	264	71%
2007-2008	BDBV	Bundibugyo District, UGANDA	37	149	25%
2008-2009	EBOV	Kasai Occidental Province, DEMOCRATIC REPUBLIC OF THE CONGO	14	32	45%
2012	SUDV	Kibaale District, WESTERN UGANDA	36	77	47%
2012	BDBV	Orientale Province, DEMOCRATIC REPUBLIC OF THE CONGO	34	62	54%
2013-2016	EBOV	Liberia, Sierra Leone, Guinea, Limited and local: Nigeria, Mali, United States, Senegal, Spain, United Kingdom, Italy	11, 310	28, 616	70-71 / 57-59 9
2014	EBOV	DRC	49	66	74%
2018	EBOV	DRC	33	54	61
2018- present	EBOV	DRC	1277	2189	ongoir

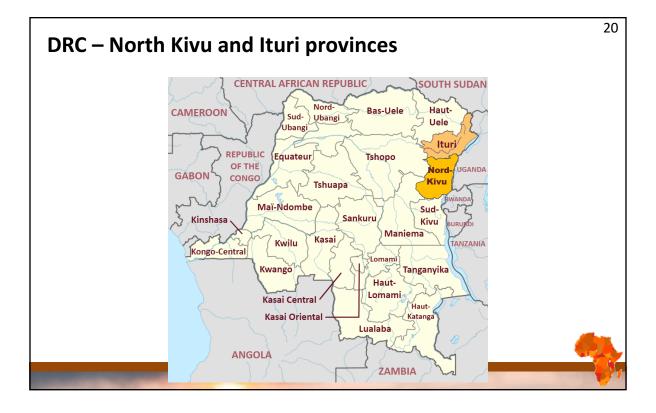

Increasing frequency of recognized filovirus outbreaks in Africa ¹¹ since 1990

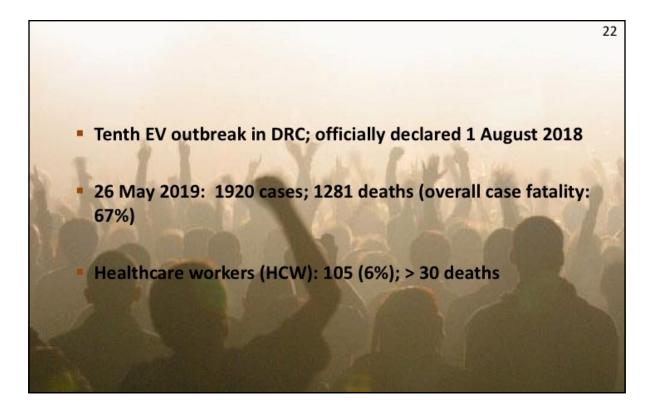

Possible reasons:

- Better surveillance and capability to rapidly diagnose and characterize filovirus infections
- Spread among wild non-human primates and other animals > human epidemics d/t hunting, slaughtering, butchering and human consumption of infected dead animals (food chain)
- Epidemiology and ecology is more complex than previously understood
- Animal-human spillover infections because of human encroachment on natural ecosystems
- Increased human exposure driven by legal and illegal financial incentives, particularly mining activities; tourism (Marburg)
- Proximity of outbreaks to larger cities and human movement > spread to other areas outside of the outbreak epicenter

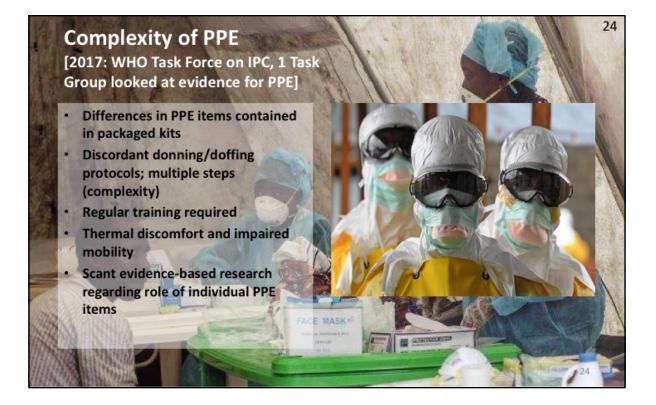

	SCIENTIFIC REPORTS	
	Rep. 2012; 2: 811. shed online Nov 15, 2012. doi: <u>10.1038/srep00811</u>	PMCID: PMC3498927
Tra	insmission of Ebola virus from pigs	to non-human primates
<u>Hana</u> Gary	a <u>M. Weingarti</u> , ^{a,1,2} <u>Carissa Embury-Hyatt</u> , ¹ <u>Charles</u> <u>/ Kobinger^{b,3,2}</u>	Nfon, ¹ Anders Leung, ³ Greg Smith, ¹ and
Autho	or information Article notes Copyright and License inform	nation ►
This	s article has been cited by other articles in PMC.	
Abs	stract	Go to: 🖸
prim	la viruses (EBOV) cause often fatal hemorrhag nates including human. While fruit bats are cor er species in EBOV transmission is unclear. In	sidered natural reservoir, involvement of



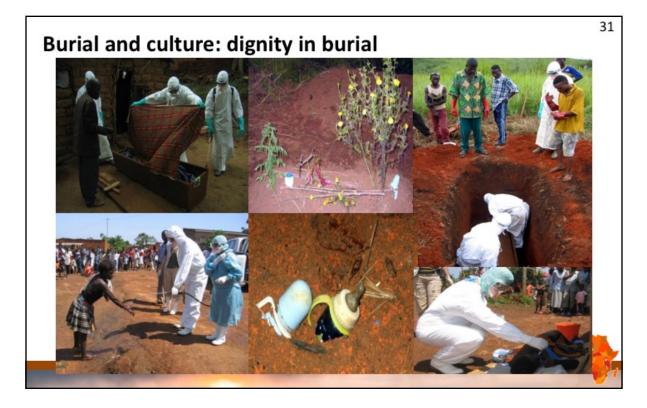




Hosted by Prof. Sade Ogunsola, President, Infection Control Africa Network www.webbertraining.com

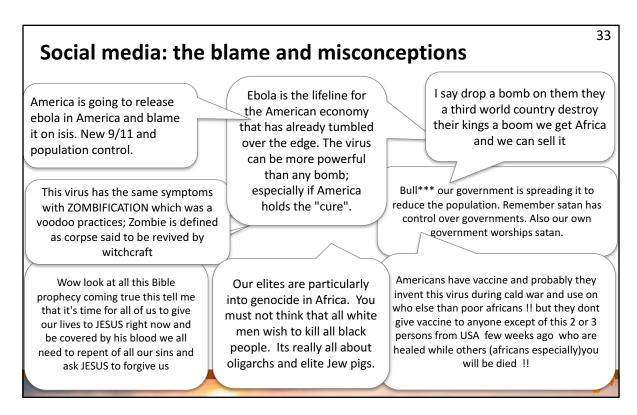


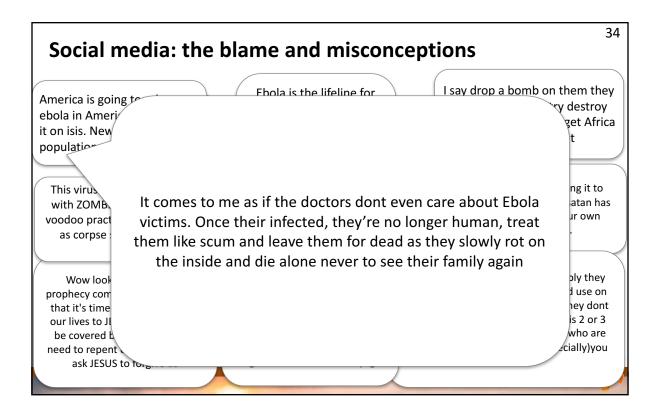




Dostacles to the epidemic response Poor infection prevention and control practices, inadequate healthcare facility infrastructure, poor healthcare delivery Early outbreak population dynamics: initial mistrust and hostility towards multinational teams Filoviral infections attributed to witchcraft, zombification Denial of filovirus existence, a ploy of government to get international funds Anger; towards government and public health messages Behavioral, religious and cultural diversity Stigma of survivors, the infected or thought to be infected

Challenges inc. controversial public health messages

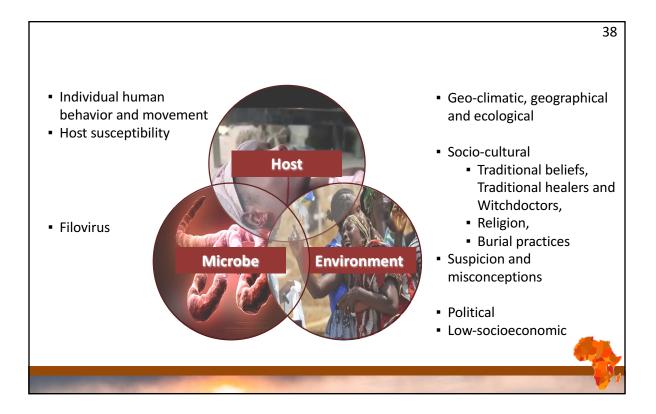

- 'Do not eat bush game'
- Social distancing; no handshaking
- Closure of markets (economic implications) and recreational areas
 e.g. bars and discotheques
- Inequity regarding who gets vaccination / treatment



- Stopping of flights; border closures; travel bans
- Closure of mining operations (force majeur) serious economic consequences for the W African sub-region

Hosted by Prof. Sade Ogunsola, President, Infection Control Africa Network www.webbertraining.com

32



WV	ww.webbertraining.com/schedulep1.php
July 16, 2019	INFECTION CONTROL IN PEDIATRICS Speaker: Dr. Shahnaz Armin, Shahid Beheshti University of Medical Sciences, Iran
July 25, 2019	DIAGNOSTIC STEWARDSHIP: MODIFIED CULTURE TESTING TO ENHANCE ANTIBIOTIC STEWARDSHIP Speaker: Robert Garcia, Stony Brook University Medical Center, New York City
August 15, 2019	(FREE Teleclass) BED BUG PREVENTION IN THE HEALTHCARE SETTING Speaker: Dr. Marcia Anderson, Environmental Protection Agency, United States
August 22, 2019	HOW TO ENGAGE AND EDUCATE NURSES IN EVIDENCE-BASED PRACTICE Speaker: Eileen J. Carter, Columbia University School of Nursing
September 5, 2019	MEASURES TO PREVENT AND CONTROL VRE: DO THEY REALLY MATTER? Speaker: Dr. Hilary Humphreys, The Royal College of Surgeons in Ireland
September 12, 2019	(FREE Teleclass) MEAT, MONKEYS, AND MOSQUITOES: A ONE HEALTH PERSPECTIVE ON EMERGING DISEASES Speaker: Prof. Laura Kahn, Woodrow Wilson School of Public and International

